Enhancing Web Search Using Query-Based Clusters and Labels

Current web search engines, such as Google, Bing, and Yahoo!, rank the set of documents S retrieved in response to a user query and display the URL of each document D in S with a title and a snippet, which serves as an abstract of D. Snippets, however, are not as useful as they are designed for, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) Jg. 1; S. 159 - 164
Hauptverfasser: Qumsiyeh, Rani, Yiu-Kai Ng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2013
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Current web search engines, such as Google, Bing, and Yahoo!, rank the set of documents S retrieved in response to a user query and display the URL of each document D in S with a title and a snippet, which serves as an abstract of D. Snippets, however, are not as useful as they are designed for, which is supposed to assist its users to quickly identify results of interest, if they exist. These snippets fail to (i) provide distinct information and (ii) capture the main contents of the corresponding documents. Moreover, when the intended information need specified in a search query is ambiguous, it is very difficult, if not impossible, for a search engine to identify precisely the set of documents that satisfy the user's intended request without requiring additional inputs. Furthermore, a document title is not always a good indicator of the content of the corresponding document. All of these design problems can be solved by our proposed query-based cluster and labeler, called QCL. QCL generates concise clusters of documents covering various subject areas retrieved in response to a user query, which saves the user's time and effort in searching for specific information of interest without having to browse through the documents one by one. Experimental results show that QCL is effective and efficient in generating high-quality clusters of documents on specific topics with informative labels.
AbstractList Current web search engines, such as Google, Bing, and Yahoo!, rank the set of documents S retrieved in response to a user query and display the URL of each document D in S with a title and a snippet, which serves as an abstract of D. Snippets, however, are not as useful as they are designed for, which is supposed to assist its users to quickly identify results of interest, if they exist. These snippets fail to (i) provide distinct information and (ii) capture the main contents of the corresponding documents. Moreover, when the intended information need specified in a search query is ambiguous, it is very difficult, if not impossible, for a search engine to identify precisely the set of documents that satisfy the user's intended request without requiring additional inputs. Furthermore, a document title is not always a good indicator of the content of the corresponding document. All of these design problems can be solved by our proposed query-based cluster and labeler, called QCL. QCL generates concise clusters of documents covering various subject areas retrieved in response to a user query, which saves the user's time and effort in searching for specific information of interest without having to browse through the documents one by one. Experimental results show that QCL is effective and efficient in generating high-quality clusters of documents on specific topics with informative labels.
Author Yiu-Kai Ng
Qumsiyeh, Rani
Author_xml – sequence: 1
  givenname: Rani
  surname: Qumsiyeh
  fullname: Qumsiyeh, Rani
  email: raniq@microsoft.com
  organization: Comput. Sci. Dept., Brigham Young Univ., Provo, UT, USA
– sequence: 2
  surname: Yiu-Kai Ng
  fullname: Yiu-Kai Ng
  email: ng@compsci.byu.edu
  organization: Comput. Sci. Dept., Brigham Young Univ., Provo, UT, USA
BookMark eNotj09Lw0AUxFdQ0NZevXjZL7Bx3_6L662GVgOBUmzpsbxsXmwkrpJtD_32RvQ0MPNjmJmwy_gVibE7kBmA9A-7UpTzTaYk6EyZCzYBk3uvvFTums1S-pBSgrMj6m7Y0yIeMIYuvvMd1fyNcAgHvk2_xvpEw1k8Y6KGF_0pHWlIHGPDK6ypT7fsqsU-0exfp2y7XGyKV1GtXspiXglUxh6Fa0LjENqgLOnwCNa34L21oW61Q8xNrRyQl23tYNylQy6DNGOKWivTGD1l93-9HRHtv4fuE4fz3jk__vD6B406RbU
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2013.24
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1479929026
9780769551456
9781479929023
0769551459
EndPage 164
ExternalDocumentID 6690009
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a245t-6dcd6a1fc25e3c8159f19955cbf36aa74b261e90fb610163c70c04cbfa3324d43
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331265000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:57:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a245t-6dcd6a1fc25e3c8159f19955cbf36aa74b261e90fb610163c70c04cbfa3324d43
PageCount 6
ParticipantIDs ieee_primary_6690009
PublicationCentury 2000
PublicationDate 2013-Nov.
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-Nov.
PublicationDecade 2010
PublicationTitle 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)
PublicationTitleAbbrev wi-iat
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001651096
ssj0001651097
ssib026764162
ssj0001651098
Score 1.5431787
Snippet Current web search engines, such as Google, Bing, and Yahoo!, rank the set of documents S retrieved in response to a user query and display the URL of each...
SourceID ieee
SourceType Publisher
StartPage 159
SubjectTerms Clustering algorithms
Engines
Frequency measurement
Google
Quantum cascade lasers
Vectors
Web search
Title Enhancing Web Search Using Query-Based Clusters and Labels
URI https://ieeexplore.ieee.org/document/6690009
Volume 1
WOSCitedRecordID wos000331265000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4A8eAJFYzv9ODRwrLtdne9KYFIQggmKNxIH7NqYhYDrIn_3nZ3AWO8eOvj0sxMO512vm8ArlFHvvIFo51IGMqDhFFp9UyljZ5jhdzoHLf2PAxHo2g2i8cVuNliYRAxTz7Dlmvmf_lmoTP3VNYWwpW4jKtQDUNRYLU2tuOLUPCSDKl4XxHW2koquV0__NWPSh5H22xPB3RwN3HZXqzlAPA_qq3kzqZf_98yD6C5Q-2R8dYfHUIF0yOob8o2kHIXN-C2l746lo30hUxRkSLhmOS5A-Qxw-UXvbeuzZDue-ZYFFZEpoYMpbJetAlP_d6k-0DLEgpU-jxYU2G0EbKTaD9ApiN7d0kcJjvQKmFCypBbPXUw9hIlXBjPdOhpj9tZyexNy3B2DLV0keIJEOPHWjFj4724wxVaCww8jAwKoQPfHgWn0HCimH8ULBnzUgpnfw-fw74TdIHqu4DaepnhJezpz_XbanmVq_YbLMWe3g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BNNETKhi_7cGjha3tus2bEgjESTBB4Ua6tlMTMwwwE_97222CMV689ePSvPfa19e-3-8BXGoZkJhwit2AK8y8hGJh9IyFiZ7DWDMlc9zaU-QPBsFkEg4rcLXCwmit8-Qz3bTN_C9fzWRmn8panNsSl-EGbHqMEadAa31bD-E-ZyUdUvHCwo29lWRy677_qx-UTI6m2Rr3cf9mZPO9aNNC4H_UW8ndTbf2v4XuQmON20PDlUfag4pO96H2XbgBlfu4Dted9MXybKTPaKxjVKQcozx7AD1kev6Jb41zU6j9llkehQUSqUKRiI0fbcBjtzNq93BZRAELwrwl5koqLtxEEk9TGZjbS2JR2Z6ME8qF8JnRlKtDJ4m5DeSp9B3pMDMrqLlrKUYPoJrOUn0ISJFQxlSZiC90WayNDXqODpTmXHrEHAZHULeimL4XPBnTUgrHfw9fwHZvdB9No_7g7gR2rNALjN8pVJfzTJ_BlvxYvi7m57mavwCmPqIl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE%2FWIC%2FACM+International+Joint+Conferences+on+Web+Intelligence+%28WI%29+and+Intelligent+Agent+Technologies+%28IAT%29&rft.atitle=Enhancing+Web+Search+Using+Query-Based+Clusters+and+Labels&rft.au=Qumsiyeh%2C+Rani&rft.au=Yiu-Kai+Ng&rft.date=2013-11-01&rft.pub=IEEE&rft.volume=1&rft.spage=159&rft.epage=164&rft_id=info:doi/10.1109%2FWI-IAT.2013.24&rft.externalDocID=6690009