Maximum Matching and Linear Programming in Fixed-Point Logic with Counting
We establish the expressibility in fixed-point logic with counting (FPC) of a number of natural polynomial-time problems. In particular, we show that the size of a maximum matching in a graph is definable in FPC. This settles an open problem first posed by Blass, Gurevich and Shelah [1], who asked w...
Saved in:
| Published in: | 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 173 - 182 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2013
|
| Subjects: | |
| ISBN: | 1479904139, 9781479904136 |
| ISSN: | 1043-6871 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We establish the expressibility in fixed-point logic with counting (FPC) of a number of natural polynomial-time problems. In particular, we show that the size of a maximum matching in a graph is definable in FPC. This settles an open problem first posed by Blass, Gurevich and Shelah [1], who asked whether the existence of perfect matchings in general graphs could be determined in the more powerful formalism of choiceless polynomial time with counting. Our result is established by noting that the ellipsoid method for solving linear programs of full dimension can be implemented in FPC. This allows us to prove that linear programs of full dimension can be optimised in FPC if the corresponding separation oracle problem can be defined in FPC. On the way to defining a suitable separation oracle for the maximum matching problem, we provide FPC formulas defining maximum flows and canonical minimum cuts in capacitated graphs. |
|---|---|
| AbstractList | We establish the expressibility in fixed-point logic with counting (FPC) of a number of natural polynomial-time problems. In particular, we show that the size of a maximum matching in a graph is definable in FPC. This settles an open problem first posed by Blass, Gurevich and Shelah [1], who asked whether the existence of perfect matchings in general graphs could be determined in the more powerful formalism of choiceless polynomial time with counting. Our result is established by noting that the ellipsoid method for solving linear programs of full dimension can be implemented in FPC. This allows us to prove that linear programs of full dimension can be optimised in FPC if the corresponding separation oracle problem can be defined in FPC. On the way to defining a suitable separation oracle for the maximum matching problem, we provide FPC formulas defining maximum flows and canonical minimum cuts in capacitated graphs. |
| Author | Anderson, Matthew Holm, Bjarki Dawar, Anuj |
| Author_xml | – sequence: 1 givenname: Matthew surname: Anderson fullname: Anderson, Matthew email: Matthew.Anderson@cl.cam.ac.uk organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK – sequence: 2 givenname: Anuj surname: Dawar fullname: Dawar, Anuj email: Anuj.Dawar@cl.cam.ac.uk organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK – sequence: 3 givenname: Bjarki surname: Holm fullname: Holm, Bjarki email: Bjarki.Holm@cl.cam.ac.uk organization: Comput. Lab., Univ. of Cambridge, Cambridge, UK |
| BookMark | eNotjE1Lw0AUABesYFO9efOyfyDxvd1NNnuUYLWSYkE9l-d-pCtmI2mK9d-r6GlgGCZjszQkz9glQoEI5rpdNU-FAJSFkCcsQ6WNAYXSzNgcQcm8qjWesWy_fwMAUSmYs4c1HWN_6PmaJruLqeOUHG9j8jTyzTh0I_X9r46JL-PRu3wzxDTxduii5Z9x2vFmOKTpJzlnp4He9_7inwv2srx9bu7z9vFu1dy0OQmFU-4ogCTp0FitgnGytrUVQEDorFReQXgthdHgtQEMAC4Er8tSkDRGGC8X7OrvG733248x9jR-batSY6mM_AYWNkzO |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/LICS.2013.23 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 182 |
| ExternalDocumentID | 6571549 |
| Genre | orig-research |
| GroupedDBID | --Z 23M 29P 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-a241t-daf03a3d19c74f9d38c8c20a0a1dc34e40fb52970e7901f00dffe7552a39929e3 |
| IEDL.DBID | RIE |
| ISBN | 1479904139 9781479904136 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326815000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1043-6871 |
| IngestDate | Wed Aug 27 04:17:06 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a241t-daf03a3d19c74f9d38c8c20a0a1dc34e40fb52970e7901f00dffe7552a39929e3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_6571549 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-June |
| PublicationDateYYYYMMDD | 2013-06-01 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science |
| PublicationTitleAbbrev | lics |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002640 ssj0001035133 |
| Score | 1.9080436 |
| Snippet | We establish the expressibility in fixed-point logic with counting (FPC) of a number of natural polynomial-time problems. In particular, we show that the size... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 173 |
| SubjectTerms | Ellipsoids Encoding fixed-point logic with counting Linear programming maximum flow maximum matching minimum cut minimum odd cut Optimization Polynomials Vectors Vocabulary |
| Title | Maximum Matching and Linear Programming in Fixed-Point Logic with Counting |
| URI | https://ieeexplore.ieee.org/document/6571549 |
| WOSCitedRecordID | wos000326815000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbwIhECZqeujJttr0HQ49FoWFXeBsatpGjUkf8WYQZpM9uDZ2t_HnF9ZVe-ilN-BAyAAzwzDzfQjdx9YAAwGEgt8GIcASrawjTsVq4b05E1dwTR8jOZmo2UxPG-hhXwsDAFXyGfRCs_rLdytbhlBZP4llQBRroqaUybZW6xBPCV9i_KCFvaGvkQg4SfyroCrqkl73eq2td1hPdT_ZZ8Tr_uh58BoyvngvMBj9YlypDM6w_b-lnqDuoXIPT_c26RQ1ID9D7R11A65vcge9jM0mW5ZLPPaqOAShsMkd9g9Tf_DDBCFnaxmGsxwPsw04Ml1leYEDNbPFIXiLBzXLRBe9Dx_fBk-kplUgxpvrgjiTUm64Y9pKkWrHlVU2ooYa5iwXIGi6iCMtKUjvLKSUujQFGceRCSC2Gvg5auWrHC4QZonz4lsETC8lIsNMYlMQlhmmjAEbXaJOEM38c4ucMa-lcvX38DU6jrZkE4SyG9Qq1iXcoiP7XWRf67tqu38AS_KkWQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0QTfSECsZve_Bood22u90zkYAuhEQ03EhpZ5M9sBgEw8-3XRbw4MVb20PTTNuZ6XTmPYQepdHAQACh4LZBCDAkVsYSq6SaOm9OywKu6SOJBgM1HsfDCnra1cIAQJF8Bk3fLP7y7dysfKisFcrII4odoEMpREA31Vr7iIr_FON7PexMfYlFwEno3gVFWVfktK_T2_EW7ansh7uc-LiV9NpvPueLNz2H0S_OlcLkdGr_W-wpauxr9_BwZ5XOUAXyc1Tbkjfg8i7X0Utfr7PZaob7Thn7MBTWucXuaeqOvp_AZ23N_HCW4062BkuG8yxfYk_ObLAP3-J2yTPRQO-d51G7S0piBaKdwV4Sq1PKNbcsNpFIY8uVUSagmmpmDRcgaDqVQRxRiJy7kFJq0xQiKQPtYWxj4Beoms9zuESYhdaJb-pRvZQINNOhSUEYppnSGkxwhepeNJPPDXbGpJTK9d_DD-i4O-onk6Q3eL1BJ8GGeoJQdouqy8UK7tCR-V5mX4v7Yut_AA88p6A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+28th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=Maximum+Matching+and+Linear+Programming+in+Fixed-Point+Logic+with+Counting&rft.au=Anderson%2C+Matthew&rft.au=Dawar%2C+Anuj&rft.au=Holm%2C+Bjarki&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781479904136&rft.issn=1043-6871&rft.spage=173&rft.epage=182&rft_id=info:doi/10.1109%2FLICS.2013.23&rft.externalDocID=6571549 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-6871&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-6871&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-6871&client=summon |

