Decidability of Weak Simulation on One-Counter Nets
One-counter nets (OCN) are Petri nets with exactly one unbounded place. They are equivalent to a subclass of one-counter automata with only a weak test for zero. We show that weak simulation preorder is decidable for OCN and that weak simulation approximants do not converge at level ω, but only at ω...
Uložené v:
| Vydané v: | 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science s. 203 - 212 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2013
|
| Predmet: | |
| ISBN: | 1479904139, 9781479904136 |
| ISSN: | 1043-6871 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | One-counter nets (OCN) are Petri nets with exactly one unbounded place. They are equivalent to a subclass of one-counter automata with only a weak test for zero. We show that weak simulation preorder is decidable for OCN and that weak simulation approximants do not converge at level ω, but only at ω 2 . In contrast, other semantic relations like weak bisimulation are undecidable for OCN [1], and so are weak (and strong) trace inclusion (Sec. VII). |
|---|---|
| ISBN: | 1479904139 9781479904136 |
| ISSN: | 1043-6871 |
| DOI: | 10.1109/LICS.2013.26 |

