Decidability of Weak Simulation on One-Counter Nets
One-counter nets (OCN) are Petri nets with exactly one unbounded place. They are equivalent to a subclass of one-counter automata with only a weak test for zero. We show that weak simulation preorder is decidable for OCN and that weak simulation approximants do not converge at level ω, but only at ω...
Saved in:
| Published in: | 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science pp. 203 - 212 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2013
|
| Subjects: | |
| ISBN: | 1479904139, 9781479904136 |
| ISSN: | 1043-6871 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | One-counter nets (OCN) are Petri nets with exactly one unbounded place. They are equivalent to a subclass of one-counter automata with only a weak test for zero. We show that weak simulation preorder is decidable for OCN and that weak simulation approximants do not converge at level ω, but only at ω 2 . In contrast, other semantic relations like weak bisimulation are undecidable for OCN [1], and so are weak (and strong) trace inclusion (Sec. VII). |
|---|---|
| ISBN: | 1479904139 9781479904136 |
| ISSN: | 1043-6871 |
| DOI: | 10.1109/LICS.2013.26 |

