Synthesizing Formal Semantics from Executable Interpreters
Program verification and synthesis frameworks that allow one to customize the language in which one is interested typically require the user to provide a formally defined semantics for the language. Because writing a formal semantics can be a daunting and error-prone task, this requirement stands in...
Saved in:
| Published in: | Proceedings of ACM on programming languages Vol. 8; no. OOPSLA2; pp. 362 - 388 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY, USA
ACM
08.10.2024
|
| Subjects: | |
| ISSN: | 2475-1421, 2475-1421 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Program verification and synthesis frameworks that allow one to customize the language in which one is interested typically require the user to provide a formally defined semantics for the language. Because writing a formal semantics can be a daunting and error-prone task, this requirement stands in the way of such frameworks being adopted by non-expert users. We present an algorithm that can automatically synthesize inductively defined syntax-directed semantics when given (i) a grammar describing the syntax of a language and (ii) an executable (closed-box) interpreter for computing the semantics of programs in the language of the grammar. Our algorithm synthesizes the semantics in the form of Constrained-Horn Clauses (CHCs), a natural, extensible, and formal logical framework for specifying inductively defined relations that has recently received widespread adoption in program verification and synthesis. The key innovation of our synthesis algorithm is a Counterexample-Guided Synthesis (CEGIS) approach that breaks the hard problem of synthesizing a set of constrained Horn clauses into small, tractable expression-synthesis problems that can be dispatched to existing SyGuS synthesizers. Our tool Synantic synthesized inductively-defined formal semantics from 14 interpreters for languages used in program-synthesis applications. When synthesizing formal semantics for one of our benchmarks, Synantic unveiled an inconsistency in the semantics computed by the interpreter for a language of regular expressions; fixing the inconsistency resulted in a more efficient semantics and, for some cases, in a 1.2x speedup for a synthesizer solving synthesis problems over such a language. |
|---|---|
| ISSN: | 2475-1421 2475-1421 |
| DOI: | 10.1145/3689724 |