Online QoS Modeling in the Cloud: A Hybrid and Adaptive Multi-learners Approach

Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service (QoS) and cloud configurations/resources. The resulted models need to cope with the dynamic fluctuation of QoS sensitivity and interference. Ho...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing s. 327 - 336
Hlavní autori: Tao Chen, Bahsoon, Rami, Xin Yao
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2014
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service (QoS) and cloud configurations/resources. The resulted models need to cope with the dynamic fluctuation of QoS sensitivity and interference. However, existing QoS modeling in the cloud are limited in terms of both accuracy and applicability due to their static and semi-dynamic nature. In this paper, we present a fully dynamic multi-learners approach for automated and online QoS modeling in the cloud. We contribute to a hybrid learners solution, which improves accuracy while keeping model complexity adequate. To determine the inputs of QoS model at runtime, we partition the inputs space into two sub-spaces, each of which applies different symmetric uncertainty based selection techniques, and we then combine the sub-spaces results. The learners are also adaptive, they simultaneously allow several machine learning algorithms to model QoS function and dynamically select the best model for prediction on the fly. We experimentally evaluate our models using RUBiS benchmark and realistic FIFA 98 workload. The results show that our multi-learners approach is more accurate and effective in contrast to the other state-of-the-art approaches.
DOI:10.1109/UCC.2014.42