Online QoS Modeling in the Cloud: A Hybrid and Adaptive Multi-learners Approach

Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service (QoS) and cloud configurations/resources. The resulted models need to cope with the dynamic fluctuation of QoS sensitivity and interference. Ho...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing pp. 327 - 336
Main Authors: Tao Chen, Bahsoon, Rami, Xin Yao
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service (QoS) and cloud configurations/resources. The resulted models need to cope with the dynamic fluctuation of QoS sensitivity and interference. However, existing QoS modeling in the cloud are limited in terms of both accuracy and applicability due to their static and semi-dynamic nature. In this paper, we present a fully dynamic multi-learners approach for automated and online QoS modeling in the cloud. We contribute to a hybrid learners solution, which improves accuracy while keeping model complexity adequate. To determine the inputs of QoS model at runtime, we partition the inputs space into two sub-spaces, each of which applies different symmetric uncertainty based selection techniques, and we then combine the sub-spaces results. The learners are also adaptive, they simultaneously allow several machine learning algorithms to model QoS function and dynamically select the best model for prediction on the fly. We experimentally evaluate our models using RUBiS benchmark and realistic FIFA 98 workload. The results show that our multi-learners approach is more accurate and effective in contrast to the other state-of-the-art approaches.
DOI:10.1109/UCC.2014.42