Scaling the power wall a path to exascale

Modern scientific discovery is driven by an insatiable demand for computing performance. The HPC community is targeting development of supercomputers able to sustain 1 ExaFlops by the year 2020 and power consumption is the primary obstacle to achieving this goal. A combination of architectural impro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 830 - 841
Hlavní autoři: Villa, Oreste, Johnson, Daniel R., O'Connor, Mike, Bolotin, Evgeny, Nellans, David, Luitjens, Justin, Sakharnykh, Nikolai, Wang, Peng, Micikevicius, Paulius, Scudiero, Anthony, Keckler, Stephen W., Dally, William J.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Piscataway, NJ, USA IEEE Press 16.11.2014
IEEE
Edice:ACM Conferences
Témata:
ISBN:1479955000, 9781479955008
ISSN:2167-4329
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Modern scientific discovery is driven by an insatiable demand for computing performance. The HPC community is targeting development of supercomputers able to sustain 1 ExaFlops by the year 2020 and power consumption is the primary obstacle to achieving this goal. A combination of architectural improvements, circuit design, and manufacturing technologies must provide over a 20× improvement in energy efficiency. In this paper, we present some of the progress NVIDIA Research is making toward the design of Exascale systems by tailoring features to address the scaling challenges of performance and energy efficiency. We evaluate several architectural concepts for a set of HPC applications demonstrating expected energy efficiency improvements resulting from circuit and packaging innovations such as low-voltage SRAM, low-energy signaling, and on-package memory. Finally, we discuss the scaling of these features with respect to future process technologies and provide power and performance projections for our Exascale research architecture.
ISBN:1479955000
9781479955008
ISSN:2167-4329
DOI:10.1109/SC.2014.73