24.77 Pflops on a gravitational tree-code to simulate the Milky Way Galaxy with 18600 GPUs

We have simulated, for the first time, the long term evolution of the Milky Way Galaxy using 51 billion particles on the Swiss Piz Daint supercomputer with our N-body gravitational tree-code Bonsai. Herein, we describe the scientific motivation and numerical algorithms. The Milky Way model was simul...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 54 - 65
Hlavní autoři: Bédorf, Jeroen, Gaburov, Evghenii, Fujii, Michiko S., Nitadori, Keigo, Ishiyama, Tomoaki, Zwart, Simon Portegies
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Piscataway, NJ, USA IEEE Press 16.11.2014
IEEE
Edice:ACM Conferences
Témata:
ISBN:1479955000, 9781479955008
ISSN:2167-4329
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We have simulated, for the first time, the long term evolution of the Milky Way Galaxy using 51 billion particles on the Swiss Piz Daint supercomputer with our N-body gravitational tree-code Bonsai. Herein, we describe the scientific motivation and numerical algorithms. The Milky Way model was simulated for 6 billion years, during which the bar structure and spiral arms were fully formed. This improves upon previous simulations by using 1000 times more particles, and provides a wealth of new data that can be directly compared with observations. We also report the scalability on both the Swiss Piz Daint and the US ORNL Titan. On Piz Daint the parallel efficiency of Bonsai was above 95%. The highest performance was achieved with a 242 billion particle Milky Way model using 18600 GPUs on Titan, thereby reaching a sustained GPU and application performance of 33.49 Pflops and 24.77 Pflops respectively.
ISBN:1479955000
9781479955008
ISSN:2167-4329
DOI:10.1109/SC.2014.10