Quantitative Algebraic Reasoning
We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a = ε b which we think of as saying that "a is approximately equal to b up to an error of ε ". We have 4 interesting examples where we have a...
Uloženo v:
| Vydáno v: | Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science s. 700 - 709 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY, USA
ACM
05.07.2016
|
| Edice: | ACM Conferences |
| Témata: | |
| ISBN: | 9781450343916, 1450343910 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a = ε b which we think of as saying that "a is approximately equal to b up to an error of ε ". We have 4 interesting examples where we have a quantitative equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; p-Wasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed barycentric algebras and the total variation metric from a variant of barycentric algebras. |
|---|---|
| ISBN: | 9781450343916 1450343910 |
| DOI: | 10.1145/2933575.2934518 |

