Definability equals recognizability for graphs of bounded treewidth

We prove a conjecture of Courcelle, which states that a graph property is definable in MSO with modular counting predicates on graphs of constant treewidth if, and only if it is recognizable in the following sense: constant-width tree decompositions of graphs satisfying the property can be recognize...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science s. 407 - 416
Hlavní autoři: Bojańczyk, Mikołaj, Pilipczuk, Michał
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 05.07.2016
Edice:ACM Conferences
Témata:
ISBN:9781450343916, 1450343910
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove a conjecture of Courcelle, which states that a graph property is definable in MSO with modular counting predicates on graphs of constant treewidth if, and only if it is recognizable in the following sense: constant-width tree decompositions of graphs satisfying the property can be recognized by tree automata. While the forward implication is a classic fact known as Courcelle's theorem, the converse direction remained open.
ISBN:9781450343916
1450343910
DOI:10.1145/2933575.2934508