Tethered Space Robot - Dynamics, Measurement, and Control

This book discusses a novel tethered space robot (TSR) system that contains the space platform, flexible tether and gripper. TSR can capture and remove non-cooperative targets such as space debris. It is the first time the concept has been described in a book, which describes the system and mission...

Full description

Saved in:
Bibliographic Details
Main Authors: Huang, Panfeng, Meng, Zhongjie, Guo, Jian, Zhang, Fan
Format: eBook
Language:English
Published: Chantilly Elsevier 2018
Elsevier Science & Technology
Academic Press
Edition:1
Subjects:
ISBN:0128123095, 9780128123096
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Title Page Table of Contents 1. Introduction 2. Dynamics Modeling of the Space Tether 3. Pose Measurement Based on Vision Perception 4. Optimal Trajectory Tracking in Approaching 5. Approaching Control Based on a Distributed Tether Model 6. Approaching Control Based on a Movable Platform 7. Approaching Control Based on a Tether Releasing Mechanism 8. Approaching Control Based on Mobile Tether Attachment Points 9. Impact Dynamic Modeling and Adaptive Target Capture Control 10. Postcapture Attitude Control for a TSR-Target Combination System Conclusions Index
  • 10.2.4. Switching Conditions and Parameter Optimization -- 10.3. Numerical Simulation -- References -- Conclusions -- Index -- Back Cover
  • 3.3.1. Arc Support Region -- 3.3.2. Estimation of Circle Parameters -- 3.4. Visual Servoing and Pose Measurement -- 3.4.1. Theory of Calculating Azimuth Angles -- 3.4.2. Improved Template Matching -- 3.4.3. Least Square Integrated Predictor -- 3.4.4. Updating Strategy of Dynamic Template -- 3.4.5. Visual Servoing Controller -- 3.4.6. Experimental Validation -- 3.4.6.1. Experimental Set-up -- 3.4.6.2. Design of Experiments -- 3.4.6.3. Results and Discussions -- Qualitative Analysis -- Quantitative Comparisons -- References -- Chapter 4: Optimal Trajectory Tracking in Approaching -- 4.1. Trajectory Modeling in Approaching -- 4.2. Coordinated Control Method -- 4.2.1. Optimization and Distribution of the Orbit Control Force -- 4.2.2. Tether Reeling Model and Tethers Tension Force Controller -- 4.2.3. Fuzzy PD Controller for Tracking Optimal Trajectory -- 4.3. Attitude Stability Strategy -- 4.3.1. Design of the Attitude Controller -- 4.3.2. Stability Proof of the Attitude Controller -- 4.4. Numerical Simulation -- References -- Chapter 5: Approaching Control Based on a Distributed Tether Model -- 5.1. Dynamics Modeling of TSR -- 5.1.1. Dynamics Modeling Based on the Hamiltonian Theory -- 5.1.2. Mathematical Discretization -- 5.2. Optimal Coordinated Controller -- 5.2.1. Minimum-Fuel Problem -- 5.2.2. Hp-Adaptive Pseudospectral Method -- 5.2.3. Closed-Loop Controller -- 5.3. Numerical Simulation -- References -- Chapter 6: Approaching Control Based on a Movable Platform -- 6.1. Approach Dynamic Model -- 6.1.1. The Attitude Model -- 6.1.2. The Trajectory Model -- 6.2. Approach Control Strategy -- 6.2.1. Open-Loop Trajectory Optimization -- 6.2.2. Feedback Trajectory Control -- 6.2.3. Feedback Attitude Control -- 6.3. Numerical Simulation -- References -- Chapter 7: Approaching Control Based on a Tether Releasing Mechanism -- 7.1. Coupling Dynamic Models
  • 7.1.1. Releasing Dynamic Model -- 7.1.2. Attitude Dynamic Model -- 7.1.3. Model of Tether Releasing Mechanism -- 7.1.4. Entire Coupled Dynamics Model -- 7.2. Coordinated Coupling Control Strategy -- 7.2.1. The Optimal Trajectory Planning -- 7.2.2. Coupled Coordinated Control Method -- 7.2.2.1. Thrusters Layout of Operation Robot -- 7.2.2.2. Coupled Coordinated Controller Design -- 7.3. Numerical Simulation -- References -- Chapter 8: Approaching Control Based on Mobile Tether Attachment Points -- 8.1. Orbit and Attitude Dynamic Model -- 8.1.1. Design of the Mechanism -- 8.1.2. Attitude Dynamics Model -- 8.1.3. Orbit Dynamic Model -- 8.1.4. Task Description of Attitude Control -- 8.2. Strategy Design of the Coordinated Controller -- 8.2.1. Attitude Coordinated Controller Design -- 8.2.1. Coordinated Tracking Controller Design -- 8.3. Numerical Simulation -- 8.3.1. Trajectory Planning with Constant Tether Tension -- 8.3.2. Simulation Results of the Coordinated Control -- References -- Chapter 9: Impact Dynamic Modeling and Adaptive Target Capture Control -- 9.1. Dynamic Modeling of Tethered Space Robots for Target Capture -- 9.1.1. Dynamic Modeling of the TSR -- 9.1.2. Dynamic Modeling of the Target -- 9.1.3. Impact Dynamic Models for the TSR Capturing a Target -- 9.2. Stabilization Controller Design for Target Capture by TSR -- 9.2.1. Impedance Control -- 9.2.2. Adaptive Robust Target Capture Control -- 9.3. Numerical Simulation -- References -- Chapter 10: Postcapture Attitude Control for a TSR-Target Combination System -- 10.1. Dynamics Model -- 10.1.1. Attitude Dynamics Model -- 10.1.2. Orbit Dynamic Model -- 10.1.3. Dynamic Analysis -- 10.2. Coordinated Control Strategies -- 10.2.1. Parameter Identification -- 10.2.2. Coordinated Controller of Tether and Thrusters -- 10.2.3. Thruster Controller Design
  • Front Cover -- Tethered Space Robot: Dynamics, Measurement, and Control -- Copyright -- Contents -- Chapter 1: Introduction -- 1.1. Background -- 1.1.1. Brief History of the Space Tentacles -- 1.1.2. Brief History of the Space Manipulator -- 1.1.3. Brief History of the Space Tether -- 1.1.3.1. Single Space Tether -- Artificial Gravity -- Orbital Transfer -- Attitude Stabilization -- 1.1.3.2. Multi-Space Tethers -- Dynamics and Control -- Attitude Control -- Structure and Configuration -- 1.1.4. Brief History of the TSR -- 1.1.4.1. Releasing/Retrieving Phase -- 1.1.4.2. Capture and Post-Capture Phase -- 1.1.4.3. Deorbiting Phase -- 1.2. System and Mission Design of TSR -- 1.2.1. System Architecture -- 1.2.2. Mission Scenarios -- References -- Further Reading -- Chapter 2: Dynamics Modeling of the Space Tether -- 2.1. Dynamics Modeling and Solving Based on the Bead Model -- 2.2. Dynamics Modeling and solving Based on Ritz method -- 2.3. Dynamics Modeling and Solving Based on Hybrid Unit Method -- 2.4. Dynamics Modeling and Solving Based on Newton-Euler Method -- 2.5. Dynamics Modeling and Solving Based on Hamiltonian -- References -- Further Reading -- Chapter : Pose Measurement Based on Vision Perception -- 3.1. Measurement System Scheme -- 3.2. Target Contour Tracking -- 3.2.1. Related Works -- 3.2.2. Feature Extraction -- 3.2.2.1. Simulation Comparisons -- 3.2.2.2. Description of SURF -- 3.2.2.3. Improved SURF -- 3.2.3. Feature Matching Algorithm -- 3.2.3.1. Improved P-KLT Algorithm -- 3.2.3.2. Rejecting the Outliers -- 3.2.4. Precise Location and Adaptive Strategy -- 3.2.4.1. Precise Location of Object -- Discrete Point Filter -- Adaptive Features Updating Strategy -- 3.2.5. Results, Limitations and Future Works -- 3.2.5.1. Experiments Condition -- 3.2.5.2. Results -- Quantitative Comparisons -- Qualitative Analysis -- 3.3. Detection of ROI