Tethered Space Robot - Dynamics, Measurement, and Control

This book discusses a novel tethered space robot (TSR) system that contains the space platform, flexible tether and gripper. TSR can capture and remove non-cooperative targets such as space debris. It is the first time the concept has been described in a book, which describes the system and mission...

Full description

Saved in:
Bibliographic Details
Main Authors: Huang, Panfeng, Meng, Zhongjie, Guo, Jian, Zhang, Fan
Format: eBook
Language:English
Published: Chantilly Elsevier 2018
Elsevier Science & Technology
Academic Press
Edition:1
Subjects:
ISBN:0128123095, 9780128123096
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This book discusses a novel tethered space robot (TSR) system that contains the space platform, flexible tether and gripper. TSR can capture and remove non-cooperative targets such as space debris. It is the first time the concept has been described in a book, which describes the system and mission design of TSR and then introduces the latest research on pose measurement, dynamics and control. The book covers the TSR system, from principle to applications, including a complete implementing scheme. A useful reference for researchers, engineers and students interested in space robots, OOS and debris removal.
AbstractList This book discusses a novel tethered space robot (TSR) system that contains the space platform, flexible tether and gripper. TSR can capture and remove non-cooperative targets such as space debris. It is the first time the concept has been described in a book, which describes the system and mission design of TSR and then introduces the latest research on pose measurement, dynamics and control. The book covers the TSR system, from principle to applications, including a complete implementing scheme. A useful reference for researchers, engineers and students interested in space robots, OOS and debris removal.
'Tethered Space Robot' discusses a novel tethered space robot (TSR) system that contains the space platform, flexible tether and gripper. TSR can capture and remove non-cooperative targets such as space debris. It is the first time the concept has been described in a book, which describes the system and mission design of TSR and then introduces the latest research on pose measurement, dynamics and control.
Author Zhang Fan
Meng Zhongjie
Huang Panfeng
Guo Jian
Author_xml – sequence: 1
  fullname: Huang, Panfeng
– sequence: 2
  fullname: Meng, Zhongjie
– sequence: 3
  fullname: Guo, Jian
– sequence: 4
  fullname: Zhang, Fan
BookMark eNpVz8tLw0AQBvAVH2hrz15zEREandk8NnvUtD6gRWiL17DZnVBNmq3ZtNL_3mh78TLDwI-Pb3rspLY1MXaFcIeA8X3Ku-mDDyii0IcjNpAiAeQJ8gCBH7Pe4QAZnbEeAkgeJzGIczZw7hMAOOcxxnDB5ILaJTVkvPlaafJmNret53ujXa1WH9oNvSkpt2loRXU79FRtvNTWbWOrS3ZaqMrR4LD77P1pvEhf_Mnb82v6MPEV51HI_dBIEwglJS-URFl0rUSsuckRuRaqCAuiWBidIxcJ6kgFCQcDhIiJNkIHfXa7D1aupG-3tFXrsm1FubWly_593tmbvV039mtDrs3-mO7KN6rKxo9phBhiIDp5vZdlbbdUZevmY6WaXfbLs3K9mM9G0xQw-AGse2kV
ContentType eBook
Copyright 2018
Copyright_xml – notice: 2018
DEWEY 629.47
DOI 10.1016/C2016-0-01754-0
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9780128123102
0128123109
Edition 1
ExternalDocumentID 9780128123102
EBC5114137
book_kpTSRDMC01
GroupedDBID 38.
AAAAS
AABBV
AAJFB
AAJIE
AAKZG
AALRI
AANYM
AAORS
AAPZQ
AAWMN
AAXUO
AAZNM
ABGWT
ABIWA
ABLXK
ABMAC
ABQQC
ACDGK
ACKCA
ADCEY
ADRYN
ADVEM
ADXUE
AECLD
AEIUV
ALBLE
ALMA_UNASSIGNED_HOLDINGS
APVFW
ATDNW
AZZ
BBABE
BDLYM
BGHEG
BIQZX
CMZ
CRELH
CZZ
DKEWE
GEOUK
HGY
JJU
KS3
KT7
L7C
MYL
O7H
SDK
TD3
UE6
ABRSK
ABQNV
ID FETCH-LOGICAL-a22542-4d9d37a992fa919f23076c2db112c7af4fee67dcb12781c5a3820d0e1118cd7c3
IEDL.DBID CMZ
ISBN 0128123095
9780128123096
IngestDate Tue Oct 14 03:18:45 EDT 2025
Fri May 30 22:21:21 EDT 2025
Sat Nov 23 14:00:22 EST 2024
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TL1097.T484 2018
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a22542-4d9d37a992fa919f23076c2db112c7af4fee67dcb12781c5a3820d0e1118cd7c3
OCLC 1009268607
PQID EBC5114137
PageCount 318
ParticipantIDs askewsholts_vlebooks_9780128123102
proquest_ebookcentral_EBC5114137
knovel_primary_book_kpTSRDMC01
PublicationCentury 2000
PublicationDate 2018
2017
2017-10-29
PublicationDateYYYYMMDD 2018-01-01
2017-01-01
2017-10-29
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Chantilly
PublicationPlace_xml – name: Chantilly
PublicationYear 2018
2017
Publisher Elsevier
Elsevier Science & Technology
Academic Press
Publisher_xml – name: Elsevier
– name: Elsevier Science & Technology
– name: Academic Press
SSID ssj0002226160
ssib049020106
Score 2.0777316
Snippet This book discusses a novel tethered space robot (TSR) system that contains the space platform, flexible tether and gripper. TSR can capture and remove...
'Tethered Space Robot' discusses a novel tethered space robot (TSR) system that contains the space platform, flexible tether and gripper. TSR can capture and...
SourceID askewsholts
proquest
knovel
SourceType Aggregation Database
Publisher
SubjectTerms Aerospace & Radar Technology
General References
Machine Design
Mechanics & Mechanical Engineering
Space robotics
TableOfContents Title Page Table of Contents 1. Introduction 2. Dynamics Modeling of the Space Tether 3. Pose Measurement Based on Vision Perception 4. Optimal Trajectory Tracking in Approaching 5. Approaching Control Based on a Distributed Tether Model 6. Approaching Control Based on a Movable Platform 7. Approaching Control Based on a Tether Releasing Mechanism 8. Approaching Control Based on Mobile Tether Attachment Points 9. Impact Dynamic Modeling and Adaptive Target Capture Control 10. Postcapture Attitude Control for a TSR-Target Combination System Conclusions Index
10.2.4. Switching Conditions and Parameter Optimization -- 10.3. Numerical Simulation -- References -- Conclusions -- Index -- Back Cover
3.3.1. Arc Support Region -- 3.3.2. Estimation of Circle Parameters -- 3.4. Visual Servoing and Pose Measurement -- 3.4.1. Theory of Calculating Azimuth Angles -- 3.4.2. Improved Template Matching -- 3.4.3. Least Square Integrated Predictor -- 3.4.4. Updating Strategy of Dynamic Template -- 3.4.5. Visual Servoing Controller -- 3.4.6. Experimental Validation -- 3.4.6.1. Experimental Set-up -- 3.4.6.2. Design of Experiments -- 3.4.6.3. Results and Discussions -- Qualitative Analysis -- Quantitative Comparisons -- References -- Chapter 4: Optimal Trajectory Tracking in Approaching -- 4.1. Trajectory Modeling in Approaching -- 4.2. Coordinated Control Method -- 4.2.1. Optimization and Distribution of the Orbit Control Force -- 4.2.2. Tether Reeling Model and Tethers Tension Force Controller -- 4.2.3. Fuzzy PD Controller for Tracking Optimal Trajectory -- 4.3. Attitude Stability Strategy -- 4.3.1. Design of the Attitude Controller -- 4.3.2. Stability Proof of the Attitude Controller -- 4.4. Numerical Simulation -- References -- Chapter 5: Approaching Control Based on a Distributed Tether Model -- 5.1. Dynamics Modeling of TSR -- 5.1.1. Dynamics Modeling Based on the Hamiltonian Theory -- 5.1.2. Mathematical Discretization -- 5.2. Optimal Coordinated Controller -- 5.2.1. Minimum-Fuel Problem -- 5.2.2. Hp-Adaptive Pseudospectral Method -- 5.2.3. Closed-Loop Controller -- 5.3. Numerical Simulation -- References -- Chapter 6: Approaching Control Based on a Movable Platform -- 6.1. Approach Dynamic Model -- 6.1.1. The Attitude Model -- 6.1.2. The Trajectory Model -- 6.2. Approach Control Strategy -- 6.2.1. Open-Loop Trajectory Optimization -- 6.2.2. Feedback Trajectory Control -- 6.2.3. Feedback Attitude Control -- 6.3. Numerical Simulation -- References -- Chapter 7: Approaching Control Based on a Tether Releasing Mechanism -- 7.1. Coupling Dynamic Models
7.1.1. Releasing Dynamic Model -- 7.1.2. Attitude Dynamic Model -- 7.1.3. Model of Tether Releasing Mechanism -- 7.1.4. Entire Coupled Dynamics Model -- 7.2. Coordinated Coupling Control Strategy -- 7.2.1. The Optimal Trajectory Planning -- 7.2.2. Coupled Coordinated Control Method -- 7.2.2.1. Thrusters Layout of Operation Robot -- 7.2.2.2. Coupled Coordinated Controller Design -- 7.3. Numerical Simulation -- References -- Chapter 8: Approaching Control Based on Mobile Tether Attachment Points -- 8.1. Orbit and Attitude Dynamic Model -- 8.1.1. Design of the Mechanism -- 8.1.2. Attitude Dynamics Model -- 8.1.3. Orbit Dynamic Model -- 8.1.4. Task Description of Attitude Control -- 8.2. Strategy Design of the Coordinated Controller -- 8.2.1. Attitude Coordinated Controller Design -- 8.2.1. Coordinated Tracking Controller Design -- 8.3. Numerical Simulation -- 8.3.1. Trajectory Planning with Constant Tether Tension -- 8.3.2. Simulation Results of the Coordinated Control -- References -- Chapter 9: Impact Dynamic Modeling and Adaptive Target Capture Control -- 9.1. Dynamic Modeling of Tethered Space Robots for Target Capture -- 9.1.1. Dynamic Modeling of the TSR -- 9.1.2. Dynamic Modeling of the Target -- 9.1.3. Impact Dynamic Models for the TSR Capturing a Target -- 9.2. Stabilization Controller Design for Target Capture by TSR -- 9.2.1. Impedance Control -- 9.2.2. Adaptive Robust Target Capture Control -- 9.3. Numerical Simulation -- References -- Chapter 10: Postcapture Attitude Control for a TSR-Target Combination System -- 10.1. Dynamics Model -- 10.1.1. Attitude Dynamics Model -- 10.1.2. Orbit Dynamic Model -- 10.1.3. Dynamic Analysis -- 10.2. Coordinated Control Strategies -- 10.2.1. Parameter Identification -- 10.2.2. Coordinated Controller of Tether and Thrusters -- 10.2.3. Thruster Controller Design
Front Cover -- Tethered Space Robot: Dynamics, Measurement, and Control -- Copyright -- Contents -- Chapter 1: Introduction -- 1.1. Background -- 1.1.1. Brief History of the Space Tentacles -- 1.1.2. Brief History of the Space Manipulator -- 1.1.3. Brief History of the Space Tether -- 1.1.3.1. Single Space Tether -- Artificial Gravity -- Orbital Transfer -- Attitude Stabilization -- 1.1.3.2. Multi-Space Tethers -- Dynamics and Control -- Attitude Control -- Structure and Configuration -- 1.1.4. Brief History of the TSR -- 1.1.4.1. Releasing/Retrieving Phase -- 1.1.4.2. Capture and Post-Capture Phase -- 1.1.4.3. Deorbiting Phase -- 1.2. System and Mission Design of TSR -- 1.2.1. System Architecture -- 1.2.2. Mission Scenarios -- References -- Further Reading -- Chapter 2: Dynamics Modeling of the Space Tether -- 2.1. Dynamics Modeling and Solving Based on the Bead Model -- 2.2. Dynamics Modeling and solving Based on Ritz method -- 2.3. Dynamics Modeling and Solving Based on Hybrid Unit Method -- 2.4. Dynamics Modeling and Solving Based on Newton-Euler Method -- 2.5. Dynamics Modeling and Solving Based on Hamiltonian -- References -- Further Reading -- Chapter : Pose Measurement Based on Vision Perception -- 3.1. Measurement System Scheme -- 3.2. Target Contour Tracking -- 3.2.1. Related Works -- 3.2.2. Feature Extraction -- 3.2.2.1. Simulation Comparisons -- 3.2.2.2. Description of SURF -- 3.2.2.3. Improved SURF -- 3.2.3. Feature Matching Algorithm -- 3.2.3.1. Improved P-KLT Algorithm -- 3.2.3.2. Rejecting the Outliers -- 3.2.4. Precise Location and Adaptive Strategy -- 3.2.4.1. Precise Location of Object -- Discrete Point Filter -- Adaptive Features Updating Strategy -- 3.2.5. Results, Limitations and Future Works -- 3.2.5.1. Experiments Condition -- 3.2.5.2. Results -- Quantitative Comparisons -- Qualitative Analysis -- 3.3. Detection of ROI
Title Tethered Space Robot - Dynamics, Measurement, and Control
URI https://app.knovel.com/hotlink/toc/id:kpTSRDMC01/tethered-space-robot/tethered-space-robot?kpromoter=Summon
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5114137
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780128123102&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NS8MwFA-iHvTiN84vgng0rE3bpPUiWBVBJuKGiJeSJinOzXasdeDVv9yXdHWCilcpBFraF5q8_PLLey8vCB0BKdcyFYwo4ETEV9QnQsJwTzkPAgVKQNPMHjbBb27Ch4fodg69N3thzOFWg7yY6KGF6aeiMo7MdlXIdl-dDEa97t15J3bcdmX3w2pFYOBJTcZFCou4nx6eDkY2sA0UozYs_VKVgXGAbuPv7Tw2KulHDv10RD7bbDHwd8yxyXkoTI4eUJRpHp_mnjUZhFzWjuFrWLHDgp0HPjEGFlEOAL0A2aoSJr26_m_zgJ3cLlf-Q7OsogVttl2soTmdr6PlL2kSN1DUm0rGXSMZ3xnJmODzt1y89GV5jDszS-cxFrnCcR2Bv4nuLy968RWZHvlABACLT0FbIuVxEUU0E5EbZSZOnUmqUuCFkovMz7RmXMnUpTx0ZSA8oDDK0QDZoVRceltoPi9yvY0wz4KQweUxoXxPGWIGfJE5kjPAdJ-20OGXzkgmQ-ueLpNZX4KmttBB3RjJqM7-kZiXklmLtxBu-i6xAqZBtcnFWQxkFjgC3_lLxi5aAj0Ja8vOHpqvxq96Hy3KSdUvxwdWIaG87nqm7PEPJTEClg
linkProvider Knovel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Tethered+Space+Robot&rft.au=Huang%2C+Panfeng&rft.au=Meng%2C+Zhongjie&rft.au=Guo%2C+Jian&rft.au=Zhang%2C+Fan&rft.date=2017-01-01&rft.pub=Elsevier+Science+%26+Technology&rft.isbn=9780128123096&rft_id=info:doi/10.1016%2FC2016-0-01754-0&rft.externalDocID=EBC5114137
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801281%2F9780128123102.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcontent.knovel.com%2Fcontent%2FThumbs%2Fthumb15642.gif