Late Breaking Results: Parallelizing Net Routing with cGANs

Obstacle-avoiding multiterminal net routing approach is proposed. The approach is inspired by deep learning image processing. The key idea is based on training a conditional generative adversarial network (cGAN) to interpret a routing task as a graphical bitmap and consequently map it to an optimal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 1372 - 1373
Hlavní autoři: Utyamishev, Dmitry, Partin-Vaisband, Inna
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Obstacle-avoiding multiterminal net routing approach is proposed. The approach is inspired by deep learning image processing. The key idea is based on training a conditional generative adversarial network (cGAN) to interpret a routing task as a graphical bitmap and consequently map it to an optimal routing solution represented by another bitmap. The system is implemented in Python/Keras, trained on synthetically generated data, evaluated on typical high-resolution benchmarks, and compared with state-of-the-art traditional deterministic and deep learning solutions. The proposed system yields between 10.75x and 83.33x speedup over the traditional router without wirelength overhead due to effective parallelization on GPU hardware.
DOI:10.1109/DAC18074.2021.9586319