Ultrafast CPU/GPU Kernels for Density Accumulation in Placement

Density accumulation is a widely-used primitive operation in physical design, especially for placement. Iterative invocation in the optimization flow makes it one of the runtime bottlenecks. Accelerating density accumulation is challenging due to data dependency and workload imbalance. In this paper...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 1123 - 1128
Hlavní autori: Guo, Zizheng, Mai, Jing, Lin, Yibo
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 05.12.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Density accumulation is a widely-used primitive operation in physical design, especially for placement. Iterative invocation in the optimization flow makes it one of the runtime bottlenecks. Accelerating density accumulation is challenging due to data dependency and workload imbalance. In this paper, we propose efficient CPU/GPU kernels for density accumulation by decomposing the problem into two phases: constant-time density collection for each instance and a linear-time prefix sum. We develop CPU and GPU dedicated implementations, and demonstrate promising efficiency benefits on tasks from large-scale placement problems.
AbstractList Density accumulation is a widely-used primitive operation in physical design, especially for placement. Iterative invocation in the optimization flow makes it one of the runtime bottlenecks. Accelerating density accumulation is challenging due to data dependency and workload imbalance. In this paper, we propose efficient CPU/GPU kernels for density accumulation by decomposing the problem into two phases: constant-time density collection for each instance and a linear-time prefix sum. We develop CPU and GPU dedicated implementations, and demonstrate promising efficiency benefits on tasks from large-scale placement problems.
Author Mai, Jing
Guo, Zizheng
Lin, Yibo
Author_xml – sequence: 1
  givenname: Zizheng
  surname: Guo
  fullname: Guo, Zizheng
  email: gzz@pku.edu.cn
  organization: Peking University,CECA,CS Department,Beijing,China
– sequence: 2
  givenname: Jing
  surname: Mai
  fullname: Mai, Jing
  email: magic3007@pku.edu.cn
  organization: Peking University,CECA,CS Department,Beijing,China
– sequence: 3
  givenname: Yibo
  surname: Lin
  fullname: Lin, Yibo
  email: yibolin@pku.edu.cn
  organization: Peking University,CECA,CS Department,Beijing,China
BookMark eNotj81KxDAYRSMoqGOfQIS8QGeSNGnyraR0dBQH7MKuhzQ_EGhTaTKLeXsLzuYcOIsL9xHdxjk6hF4o2VJKYLdvWqqI5FtGGN2CUDXlcIMKkIrWteAVk5zcoyKlMJCaCMVXPqDXfsyL9jpl3Hb97tD1-Mst0Y0J-3nBexdTyBfcGHOezqPOYY44RNyN2rjJxfyE7rwekyuu3qD-_e2n_SiP34fPtjmWmlGZSzswD0wL5pkAbw1Iy3VtK2B-FfUenCWCCK3sWuXguSacA4BRRprBVxv0_L8bnHOn3yVMermcrjerP4_uSsc
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC18074.2021.9586149
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665432740
1665432748
EndPage 1128
ExternalDocumentID 9586149
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a217t-db2f92a52f259fdc97d4a6d392fa6d1ff9ed0505a8d6d37bf4a044999c8c7cbf3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766079700188&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a217t-db2f92a52f259fdc97d4a6d392fa6d1ff9ed0505a8d6d37bf4a044999c8c7cbf3
PageCount 6
ParticipantIDs ieee_primary_9586149
PublicationCentury 2000
PublicationDate 2021-Dec.-5
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2021 58th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584060
Score 2.2267807
Snippet Density accumulation is a widely-used primitive operation in physical design, especially for placement. Iterative invocation in the optimization flow makes it...
SourceID ieee
SourceType Publisher
StartPage 1123
SubjectTerms Design automation
Graphics processing units
Kernel
Optimization
Physical design
Runtime
Task analysis
Title Ultrafast CPU/GPU Kernels for Density Accumulation in Placement
URI https://ieeexplore.ieee.org/document/9586149
WOSCitedRecordID wos000766079700188&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MnlU38TQ4e7dZmXdKcZGxOQRg9WNhtpPkBA-mk6wb-977X1YngxVNCoA1pA9_78t6XD-CeqDEXXAehjyjNyEmsrE2AG9rGuTCKu6Q2m5DzebJYqLQFDwctjHOuLj5zferWuXy7Nls6KhuoUYJootrQllLstVrfe4eye4hNYSPSiUI1mI4nEV31giSQR_3m2V8mKjWGzE7-N_sp9H7EeCw9wMwZtFzRhcfsvSq115uKTdJs8Jxm7NWVBQIdwyiUTaksvfpkY4NvbQy62KpgKR2a0zQ9yGZPb5OXoPFCCDSShiqwOfeK6xH3yFe8NUraWAuL0Y3HJvJeOUumdDqxOCpzH-swJjZjEiNN7ofn0CnWhbsAJkNhMMzJhwbh2-YWOYxH3HcYOlihRHQJXVr88mN_3cWyWffV38PXcEzft67wGN1Apyq37haOzK5abcq7-h99AWKGkX8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qFfSk0orf7sGjaZNtvvYkpbVWWksODfRWNvsBBUmlTQX_vTNprAhePO2ykCybLLx5O_P2AdwTNeYhl45rPUozchIrS-XghtZ-FirBTVyaTUSTSTybiaQGDzstjDGmLD4zLeqWuXy9VBs6KmuLIEY0EXuwH_g-d7dqre_dQ_k9RCe3kul4rmj3uz2PLntBGsi9VvX0LxuVEkUGx_-b_wSaP3I8luyA5hRqJm_AY_pWrKSV64L1krT9nKRsZFY5Qh3DOJT1qTC9-GRdhW-tLLrYImcJHZvTNE1IB0_T3tCp3BAcibShcHTGreAy4BYZi9VKRNqXocb4xmLjWSuMJls6GWscjTLrS9cnPqNiFanMds6gni9zcw4sckOFgU7WUQjgOtPIYiwiv8HgQYci9C6gQYufv28vvJhX6778e_gODofT1_F8_DIZXcERfeuy3iO4hnqx2pgbOFAfxWK9ui3_1xcmSpTG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+58th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Ultrafast+CPU%2FGPU+Kernels+for+Density+Accumulation+in+Placement&rft.au=Guo%2C+Zizheng&rft.au=Mai%2C+Jing&rft.au=Lin%2C+Yibo&rft.date=2021-12-05&rft.pub=IEEE&rft.spage=1123&rft.epage=1128&rft_id=info:doi/10.1109%2FDAC18074.2021.9586149&rft.externalDocID=9586149