Double Affine Hecke Algebras and Congruence Groups

The most general construction of double affine Artin groups (DAAG) and Hecke algebras (DAHA) associates such objects to pairs of compatible reductive group data. We show that DAAG/DAHA It turns out that the structural intricacies of DAAG/DAHA are captured by the underlying We first give a new Coxete...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Ion, Bogdan, Sahi, Siddhartha
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2021
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:1470443260, 9781470443269
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The most general construction of double affine Artin groups (DAAG) and Hecke algebras (DAHA) associates such objects to pairs of compatible reductive group data. We show that DAAG/DAHA It turns out that the structural intricacies of DAAG/DAHA are captured by the underlying We first give a new Coxeter-type presentation for adjoint DAAG as quotients of the Coxeter braid groups associated to certain crystallographic diagrams that we call double affine Coxeter diagrams. As a consequence we show that the rank two Artin groups of type We show further that the above rank two Artin group action descends to an outer action of the congruence subgroup
Bibliografie:November 2020, volume 268, number 1305 (second of 6 numbers)
Includes bibliographical reference (p. 89-90)
ISBN:1470443260
9781470443269
ISSN:0065-9266
1947-6221
DOI:10.1090/memo/1305