Special Protein Molecules Computational Identification

It is time consuming and costly to detect new molecules of some special proteins. These special proteins include cytokines, enzymes, cell-penetrating peptides, anticancer peptides, cancer lectins, G-protein-coupled receptors, etc. Researchers often employ computer programs to list some candidates, a...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Zou, Quan
Médium: E-kniha
Jazyk:angličtina
Vydáno: MDPI - Multidisciplinary Digital Publishing Institute 2018
MDPI
Témata:
ISBN:3038970441, 9783038970439, 3038970433, 9783038970446
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is time consuming and costly to detect new molecules of some special proteins. These special proteins include cytokines, enzymes, cell-penetrating peptides, anticancer peptides, cancer lectins, G-protein-coupled receptors, etc. Researchers often employ computer programs to list some candidates, and to validate the candidates with molecular experiments. These computer programs are key to possible savings on wet experiment costs. Software results with high false positive will lead to high costs in the validation process. In this Special Issue, we focus on these computer program approaches and algorithms. Some "golden features" from protein primary sequences have been proposed for these problems, such as Chou’s PseAAC (pseudo amino acid composition). PseAAC has been tried on nearly all kinds of protein identification, together with SVM (support vector machines, a type of classifier). However, I prefer special features, and classification methods should be proposed for special protein molecules. "Golden features" cannot work well on all kinds of proteins. I hope that submissions will focus on a type of special protein molecule, collect related data sets, obtain better prediction performance (especially low false positives), and develop user-friendly software tools or web servers.
AbstractList It is time consuming and costly to detect new molecules of some special proteins. These special proteins include cytokines, enzymes, cell-penetrating peptides, anticancer peptides, cancer lectins, G-protein-coupled receptors, etc. Researchers often employ computer programs to list some candidates, and to validate the candidates with molecular experiments. These computer programs are key to possible savings on wet experiment costs. Software results with high false positive will lead to high costs in the validation process. In this Special Issue, we focus on these computer program approaches and algorithms. Some "golden features" from protein primary sequences have been proposed for these problems, such as Chou’s PseAAC (pseudo amino acid composition). PseAAC has been tried on nearly all kinds of protein identification, together with SVM (support vector machines, a type of classifier). However, I prefer special features, and classification methods should be proposed for special protein molecules. "Golden features" cannot work well on all kinds of proteins. I hope that submissions will focus on a type of special protein molecule, collect related data sets, obtain better prediction performance (especially low false positives), and develop user-friendly software tools or web servers.
Special Protein Molecules Computational Identification
Author Quan Zou (Ed.)
Author_xml – sequence: 1
  fullname: Zou, Quan
BookMark eNpNkN1KAzEQhQMqaGufQJC-wOpkk83PpRR_ChUFxdswSSYY3W7K7vbCt3dpvZC5OJyZw3dgZuy0Kx0xds3hRggLt76U78FqU4kKhLG6AikrdcJm4mAnx8_ZYhi-AKC2YKBuLph621HI2C5f-zJS7pbPpaWwb2lYrsp2tx9xzKWb7utI3ZhTDofFJTtL2A60-NM5-3i4f189VZuXx_XqblNhzSd-FRojbDAiENdAaNBHr2IMQqsUuTeKp2S0EqpGiKnGWpDkEkOtI1AjScyZO4J99m0uvmAfXdlR19NA2IfPNvse-x9XMLv_mVC2zgaRjAdykjfcyRSU8yDQJa0bOY3SyU4NV8eGghPWxYKHR7rGGtDiF9T_akI
ContentType eBook
Copyright https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
Copyright_xml – notice: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
DBID V1H
BIANM
DOI 10.3390/books978-3-03897-044-6
DatabaseName DOAB: Directory of Open Access Books
Open Research Library (Open Access)
DatabaseTitleList

Database_xml – sequence: 1
  dbid: V1H
  name: DOAB: Directory of Open Access Books
  url: https://directory.doabooks.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
ExternalDocumentID oai_biblioboard_com_9c3f8b0e_4151_4fc6_b03a_f775454567f9
59807
GroupedDBID AGWHU
ALMA_UNASSIGNED_HOLDINGS
BIANM
HVQEU
PYIOH
V1H
ID FETCH-LOGICAL-a21025-c5839c83ce170ea8abdb6ddc376fd1b861ff876362a0df2a23e414ac27d0e54e3
IEDL.DBID V1H
ISBN 3038970441
9783038970439
3038970433
9783038970446
IngestDate Tue Dec 02 16:43:32 EST 2025
Wed Oct 08 01:53:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident R858-859.7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a21025-c5839c83ce170ea8abdb6ddc376fd1b861ff876362a0df2a23e414ac27d0e54e3
Notes MODID-565f2b0520d:MDPI
OpenAccessLink https://directory.doabooks.org/handle/20.500.12854/59807
PageCount VIII, 296
ParticipantIDs biblioboard_openresearchlibrary_oai_biblioboard_com_9c3f8b0e_4151_4fc6_b03a_f775454567f9
oapen_doabooks_59807
PublicationCentury 2000
PublicationDate 2018
2018-01-01T00:00:00Z
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationYear 2018
Publisher MDPI - Multidisciplinary Digital Publishing Institute
MDPI
Publisher_xml – name: MDPI - Multidisciplinary Digital Publishing Institute
– name: MDPI
SSID ssj0002908025
Score 2.0718107
Snippet It is time consuming and costly to detect new molecules of some special proteins. These special proteins include cytokines, enzymes, cell-penetrating peptides,...
Special Protein Molecules Computational Identification
SourceID biblioboard
oapen
SourceType Open Access Repository
Publisher
SubjectTerms anticancer peptides
bioinformatics
Cell-Penetrating Peptides
DNA/RNA binding proteins
feature selection
machine learning
MHC binding peptide
oncogene
prediction
protein classification
Proteomics
PseAAC features
R858-859.7
type III secreted proteins
Title Special Protein Molecules Computational Identification
URI https://directory.doabooks.org/handle/20.500.12854/59807
https://openresearchlibrary.org/viewer/9c3f8b0e-4151-4fc6-b03a-f775454567f9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqFiFY-CiI8qUMrKFObCf2jKi6tOqAqm6W7ZxFJZSgFvj9-OJQFYmJ0XGG5Ow4785-7xHyYIQBzHbC5K0g5U7y1FKepVKBtFwCF8a1ZhPlfC5XK7XoEfnDhYkLeYOnmhuDOHPbbudHyYGQqT8KiooIUvCxUBJp5IOQ4RSYdi2z6a66kivkkAokc6CCXIkyXXsNnkXtnV2n-t3mRSQTM6bouH2KeIqg7U5Dfxrw8rFd27d1Y5swlGiXZN6h3vs3TU7-_1anZADIdTgjPajPyeGs22cfkqKzpU8WKOOwrpNZdNGFbRJtILoSYhJ5vr4r_F2Q5eT55Wmadg4LqcFUT6ROBIDkJHOQlRSMNLayRVW5sOz4KrOyyLxHzboiN7TyuckZ8Iwbl5cVBcGBXZJ-3dRwRRJpmJAl0BB5w5U3yjDvc186623BKRuR1V7ANJqDdXpGr13BSqPU9f494ZvTyjEvLQUdkEamuXeFtpQZ7VG6D-Ff6dWIDNvo65_o6jaK139fviFHAfXIWEe5Jf2PzSfckQP39bHebu7befQNmh3DEg
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Special+Protein+Molecules+Computational+Identification&rft.au=Quan+Zou+%28Ed.%29&rft.date=2018-01-01&rft.pub=MDPI+-+Multidisciplinary+Digital+Publishing+Institute&rft.isbn=9783038970439&rft_id=info:doi/10.3390%2Fbooks978-3-03897-044-6&rft.externalDBID=V1H&rft.externalDocID=59807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783038970446/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783038970446/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783038970446/sc.gif&client=summon&freeimage=true