Stability of heat kernel estimates for symmetric non-local Dirichlet forms

In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping ker...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Chen, Zhen-Qing, Kumagai, Takashi, Wang, Jian
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2021
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:9781470448639, 1470448637
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, variants of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particular, we establish stability of heat kernel estimates for
Bibliografie:May 2021, volume 271, number 1330 (seventh of 7 numbers)
Includes bibliographical references (p. 87-89)
ISBN:9781470448639
1470448637
ISSN:0065-9266
1947-6221
DOI:10.1090/memo/1330