Stability of heat kernel estimates for symmetric non-local Dirichlet forms

In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping ker...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavní autori: Chen, Zhen-Qing, Kumagai, Takashi, Wang, Jian
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: Providence, Rhode Island American Mathematical Society 2021
Vydanie:1
Edícia:Memoirs of the American Mathematical Society
Predmet:
ISBN:9781470448639, 1470448637
ISSN:0065-9266, 1947-6221
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping kernels, variants of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In particular, we establish stability of heat kernel estimates for
Bibliografia:May 2021, volume 271, number 1330 (seventh of 7 numbers)
Includes bibliographical references (p. 87-89)
ISBN:9781470448639
1470448637
ISSN:0065-9266
1947-6221
DOI:10.1090/memo/1330