Stability of heat kernel estimates for symmetric non-local Dirichlet forms
In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent characterizations in terms of the jumping ker...
Uložené v:
| Hlavní autori: | , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Providence, Rhode Island
American Mathematical Society
2021
|
| Vydanie: | 1 |
| Edícia: | Memoirs of the American Mathematical Society |
| Predmet: | |
| ISBN: | 9781470448639, 1470448637 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition,
and establish stability of two-sided heat kernel estimates and heat kernel upper bounds. We obtain their stable equivalent
characterizations in terms of the jumping kernels, variants of cut-off Sobolev inequalities, and the Faber-Krahn inequalities. In
particular, we establish stability of heat kernel estimates for |
|---|---|
| Bibliografia: | May 2021, volume 271, number 1330 (seventh of 7 numbers) Includes bibliographical references (p. 87-89) |
| ISBN: | 9781470448639 1470448637 |
| ISSN: | 0065-9266 1947-6221 |
| DOI: | 10.1090/memo/1330 |

