Tunneling estimates and approximate controllability for hypoelliptic equations
This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator The first result is the tunneling estimate The main result is a stability estimate for solutions to the hypoelliptic wave equation We then prove the approximate controllabilit...
Uloženo v:
| Hlavní autoři: | , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence, Rhode Island
American Mathematical Society
2022
|
| Vydání: | 1 |
| Edice: | Memoirs of the American Mathematical Society |
| Témata: |
Partial differential equations
> Close-to-elliptic equations and systems
> Hypoelliptic equations. msc
Partial differential equations
> Qualitative properties of solutions
> Continuation and prolongation of solutions. msc
Partial differential equations
> Spectral theory and eigenvalue problems
> Asymptotic distribution of eigenvalues and eigenfunctions. msc
|
| ISBN: | 1470451387, 9781470451387 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator
The first result is the tunneling estimate
The main
result is a stability estimate for solutions to the hypoelliptic wave equation
We then prove the approximate controllability of the
hypoelliptic heat equation
We also explain how the analyticity
assumption can be relaxed, and a boundary
Most results turn out to be optimal on a family of Grushin-type operators.
The main proof relies on the
general strategy to produce quantitative unique continuation estimates, developed by the authors in Laurent-Léautaud (2019). |
|---|---|
| AbstractList | This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator
The first result is the tunneling estimate
The main
result is a stability estimate for solutions to the hypoelliptic wave equation
We then prove the approximate controllability of the
hypoelliptic heat equation
We also explain how the analyticity
assumption can be relaxed, and a boundary
Most results turn out to be optimal on a family of Grushin-type operators.
The main proof relies on the
general strategy to produce quantitative unique continuation estimates, developed by the authors in Laurent-Léautaud (2019). View the abstract. |
| Author | Laurent, Camille Léautaud, Matthieu |
| Author_xml | – sequence: 1 fullname: Laurent, Camille – sequence: 2 fullname: Léautaud, Matthieu |
| BackLink | https://cir.nii.ac.jp/crid/1130010754488603784$$DView record in CiNii |
| BookMark | eNpVkctuUzEQhg20qEnJgjc4EpUQi0NnfBkfLyEqF6mCTcXWchyHWnXsND6B9u1xLhukkUcaf5qZf_4pO8slB8beInxEMHC9DutyjULpF2xm9IBSQwsu5Es2QSN1T5zjKzY9fCgUgz5jEwBSveFE52zKgbeQGs3rRgmO2hgSdMFmtcYFKE5AUuKE_bjb5RxSzL-7UMe4dmOoncvLzm022_J0KHS-5HFbUnKLmOL43K3Ktrt_3pSQUtyM0XfhcefGWHJ9w85XLtUwO-VL9uvLzd38W3_78-v3-afb3nFQ-qlfIQbywutBguGaL9GDV7TEwaw80bAgBaoVEDyHQIYbAu8lJ-7aJUIQl-zDsbGrD-FvvS9prPZPCotSHqr972aNfX9km6LHXZNpD5gPTZVL9ubznIwwmotGXh3JHKP1cf8iCgAEraQcBgLRNm7Yu9PwdbWnkQh2b53dW2f31ol_qDOAaw |
| CitedBy_id | crossref_primary_10_5802_crmath_405 crossref_primary_10_2140_paa_2025_7_733 crossref_primary_10_1007_s11464_024_0097_2 crossref_primary_10_1109_TAC_2024_3476174 crossref_primary_10_3934_mcrf_2024015 crossref_primary_10_1051_cocv_2025042 |
| ContentType | eBook Book |
| Copyright | Copyright 2022 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2022 American Mathematical Society |
| DBID | RYH |
| DEWEY | 515/.353 |
| DOI | 10.1090/memo/1357 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781470470234 1470470233 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470470234 EBC6939723 BC14606306 10_1090_memo_1357 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 38. AABBV ABARN ABQPQ ADAIA ADVEM AERYV AFOJC AHWGJ AJFER BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a2057x-f11e6c3c78409272d1c0c56d189fc668b6505c5610c20e692960cc4262a047ee3 |
| ISBN | 1470451387 9781470451387 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000060027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 03:05:21 EST 2024 Wed Dec 10 12:41:24 EST 2025 Thu Jun 26 21:13:40 EDT 2025 Thu Aug 14 15:25:23 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | eigenfunctions heat equation control theory hypoelliptic operators Stability estimates wave equation |
| LCCN | 2022024719 |
| LCCallNum_Ident | QA377 .L386 2022 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a2057x-f11e6c3c78409272d1c0c56d189fc668b6505c5610c20e692960cc4262a047ee3 |
| Notes | Includes bibliographical references (p. 91-95) March 2022, volume 276, number 1357 (fifth of 7 numbers) |
| OCLC | 1321799636 |
| OpenAccessLink | https://hal.science/hal-01717587 |
| PQID | EBC6939723 |
| PageCount | 108 |
| ParticipantIDs | askewsholts_vlebooks_9781470470234 proquest_ebookcentral_EBC6939723 nii_cinii_1130010754488603784 ams_ebooks_10_1090_memo_1357 |
| PublicationCentury | 2000 |
| PublicationDate | 2022. |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022. |
| PublicationDecade | 2020 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, RI – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2022 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssib052606441 ssj0002676793 ssj0008047 |
| Score | 2.7053113 |
| Snippet | This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator
The first result is the tunneling... View the abstract. |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Differential equations, Hypoelliptic Partial differential equations -- Close-to-elliptic equations and systems -- Hypoelliptic equations. msc Partial differential equations -- Hyperbolic equations and systems -- Wave equation. msc Partial differential equations -- Parabolic equations and systems -- Heat equation. msc Partial differential equations -- Qualitative properties of solutions -- Continuation and prolongation of solutions. msc Partial differential equations -- Spectral theory and eigenvalue problems -- Asymptotic distribution of eigenvalues and eigenfunctions. msc Systems theory; control -- Controllability, observability, and system structure -- Controllability. msc Systems theory; control -- Controllability, observability, and system structure -- Observability. msc |
| TableOfContents | Introduction and main results
--
The quantitative Holmgren-John theorem of \cite{LL:15}
--
The hypoelliptic wave equation, proof of Theorem 1.15
--
The hypoelliptic heat equation
--
A partially analytic example: Grushin type operators
--
On the optimality: Proof of Proposition 1.14
--
Subelliptic estimates
--
Sub-Riemannian norm of normal vectors Cover -- Title page -- Chapter 1. Introduction and main results -- 1.1. Introduction -- 1.2. Main results -- 1.3. Comparison to other works -- 1.4. Sketch of the proofs and plan of the paper -- 1.5. Some remarks and further comments -- Chapter 2. The quantitative Holmgren-John theorem of [LL19] -- 2.1. A typical quantitative unique continuation result of [LL19] -- 2.2. Definitions and tools for propagating the information -- 2.3. Semiglobal estimates along foliation by hypersurfaces -- Chapter 3. The hypoelliptic wave equation, proof of Theorem 1.15 -- 3.1. Step 1: Geometric setting and non-characteristic hypersurfaces -- 3.2. Step 2: Propagation of smallness -- 3.3. Step 3: Energy estimates -- Chapter 4. The hypoelliptic heat equation -- 4.1. Approximate controllability with polynomial cost in large time: Proof of Theorem 1.22 -- 4.2. Approximate controllability in Gevrey-type spaces: Proof of Theorem 1.20 -- 4.3. Approximate controllability in natural spaces with exponential cost: Proof of Theorem 1.18 -- 4.4. Technical lemmata used for the heat equation -- Chapter 5. A partially analytic example: Grushin type operators -- 5.1. The geometric context -- 5.2. A proof of Estimate (1.26) -- 5.3. An observation term in ² in quantitative unique continuation estimates -- Appendix A. On the optimality: Proof of Proposition 1.14 -- Appendix B. Subelliptic estimates -- B.1. ^{ } subelliptic estimates on compact manifolds -- B.2. Subelliptic estimates for manifolds with boundaries -- Appendix C. Sub-Riemannian norm of normal vectors -- Bibliography -- Back Cover |
| Title | Tunneling estimates and approximate controllability for hypoelliptic equations |
| URI | https://www.ams.org/memo/1357/ https://cir.nii.ac.jp/crid/1130010754488603784 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6939723 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470470234 |
| Volume | 276 |
| WOSCitedRecordID | wos0000060027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Pb9MwFMctWjjQEz9F2YYsxDWafyROfF1VQAIVDgPtFiWOIyLWtFuaqfz3ey9O3Kg7IA5crDqKYuV9XfvZfvk8Qj5EskxKLmD0s5EKQhNFQV5kOlBaGJ2LslBF0SWbiFer5OpKf-_zhDZdOoG4rpP9Xm__q9RwDcTGT2f_QW7_ULgAv0F0KEF2KI88Yl_tFW8xZgWX_kjOWKMT6VCsiA3fdxeGyPRrR-d2wZq__mw3iOXcIrvV3rSjPbyOyNgiwMkFh2COIt8TvrpD9qzdZa1LTYy5wyvbjncShDjaSTgcEXlgLAJJNp5I4pedPIwRSyPdVPlgEGYaoxbXdr3BbQHpANRHVOuLBQzRyPtSEzKJFSybH39afvvxxe-PCSTJadl9ize0NiC6hvpAitLsHFs7x7Y6Ym4zI7Os-Q3TBEwhO6hN6qp6MNt2LsTlMzLFz0qek0e2fkFmh5dvXpKVV4565SgoR0fK0SPlKChHx8pRr9wr8vPj8nLxOejzXASZAHd5H5ScW2WkiXG1LWJRcMNMpAqe6NIoleTgRkcGPV0jmIW_ESw7jcFcAhkLY2vlazKtN7V9Q2gG_i3Lhc2jWIYR-O8GnGiEGiIXjwsxJ6dgnrQ7iW9SF4HAUrReitabk_cju6V31_2Ng9ljcPHCOTkDc6amwpLjeShnyFFMEsUkvMOc0MHQrqE-zjhdXiyUlpjn7u1fHnFCnh566CmZ7m5be0aemLtd1dy-6_vKPUUxV4c |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Tunneling+estimates+and+approximate+controllability+for+hypoelliptic+equations&rft.au=Laurent%2C+Camille&rft.au=L%C3%A9autaud%2C+Matthieu&rft.date=2022-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470451387&rft_id=info:doi/10.1090%2Fmemo%2F1357&rft.externalDocID=BC14606306 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470470234.jpg |

