Tunneling estimates and approximate controllability for hypoelliptic equations

This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator The first result is the tunneling estimate The main result is a stability estimate for solutions to the hypoelliptic wave equation We then prove the approximate controllabilit...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Laurent, Camille, Léautaud, Matthieu
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2022
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:1470451387, 9781470451387
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator The first result is the tunneling estimate The main result is a stability estimate for solutions to the hypoelliptic wave equation We then prove the approximate controllability of the hypoelliptic heat equation We also explain how the analyticity assumption can be relaxed, and a boundary Most results turn out to be optimal on a family of Grushin-type operators. The main proof relies on the general strategy to produce quantitative unique continuation estimates, developed by the authors in Laurent-Léautaud (2019).
AbstractList This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator The first result is the tunneling estimate The main result is a stability estimate for solutions to the hypoelliptic wave equation We then prove the approximate controllability of the hypoelliptic heat equation We also explain how the analyticity assumption can be relaxed, and a boundary Most results turn out to be optimal on a family of Grushin-type operators. The main proof relies on the general strategy to produce quantitative unique continuation estimates, developed by the authors in Laurent-Léautaud (2019).
View the abstract.
Author Laurent, Camille
Léautaud, Matthieu
Author_xml – sequence: 1
  fullname: Laurent, Camille
– sequence: 2
  fullname: Léautaud, Matthieu
BackLink https://cir.nii.ac.jp/crid/1130010754488603784$$DView record in CiNii
BookMark eNpVkctuUzEQhg20qEnJgjc4EpUQi0NnfBkfLyEqF6mCTcXWchyHWnXsND6B9u1xLhukkUcaf5qZf_4pO8slB8beInxEMHC9DutyjULpF2xm9IBSQwsu5Es2QSN1T5zjKzY9fCgUgz5jEwBSveFE52zKgbeQGs3rRgmO2hgSdMFmtcYFKE5AUuKE_bjb5RxSzL-7UMe4dmOoncvLzm022_J0KHS-5HFbUnKLmOL43K3Ktrt_3pSQUtyM0XfhcefGWHJ9w85XLtUwO-VL9uvLzd38W3_78-v3-afb3nFQ-qlfIQbywutBguGaL9GDV7TEwaw80bAgBaoVEDyHQIYbAu8lJ-7aJUIQl-zDsbGrD-FvvS9prPZPCotSHqr972aNfX9km6LHXZNpD5gPTZVL9ubznIwwmotGXh3JHKP1cf8iCgAEraQcBgLRNm7Yu9PwdbWnkQh2b53dW2f31ol_qDOAaw
CitedBy_id crossref_primary_10_5802_crmath_405
crossref_primary_10_2140_paa_2025_7_733
crossref_primary_10_1007_s11464_024_0097_2
crossref_primary_10_1109_TAC_2024_3476174
crossref_primary_10_3934_mcrf_2024015
crossref_primary_10_1051_cocv_2025042
ContentType eBook
Book
Copyright Copyright 2022 American Mathematical Society
Copyright_xml – notice: Copyright 2022 American Mathematical Society
DBID RYH
DEWEY 515/.353
DOI 10.1090/memo/1357
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781470470234
1470470233
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470470234
EBC6939723
BC14606306
10_1090_memo_1357
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
YNT
YQT
38.
AABBV
ABARN
ABQPQ
ADAIA
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a2057x-f11e6c3c78409272d1c0c56d189fc668b6505c5610c20e692960cc4262a047ee3
ISBN 1470451387
9781470451387
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000060027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Fri Nov 08 03:05:21 EST 2024
Wed Dec 10 12:41:24 EST 2025
Thu Jun 26 21:13:40 EDT 2025
Thu Aug 14 15:25:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords eigenfunctions
heat equation
control theory
hypoelliptic operators
Stability estimates
wave equation
LCCN 2022024719
LCCallNum_Ident QA377 .L386 2022
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a2057x-f11e6c3c78409272d1c0c56d189fc668b6505c5610c20e692960cc4262a047ee3
Notes Includes bibliographical references (p. 91-95)
March 2022, volume 276, number 1357 (fifth of 7 numbers)
OCLC 1321799636
OpenAccessLink https://hal.science/hal-01717587
PQID EBC6939723
PageCount 108
ParticipantIDs askewsholts_vlebooks_9781470470234
proquest_ebookcentral_EBC6939723
nii_cinii_1130010754488603784
ams_ebooks_10_1090_memo_1357
PublicationCentury 2000
PublicationDate 2022.
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022.
PublicationDecade 2020
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, RI
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2022
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssib052606441
ssj0002676793
ssj0008047
Score 2.7053113
Snippet This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator The first result is the tunneling...
View the abstract.
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Differential equations, Hypoelliptic
Partial differential equations -- Close-to-elliptic equations and systems -- Hypoelliptic equations. msc
Partial differential equations -- Hyperbolic equations and systems -- Wave equation. msc
Partial differential equations -- Parabolic equations and systems -- Heat equation. msc
Partial differential equations -- Qualitative properties of solutions -- Continuation and prolongation of solutions. msc
Partial differential equations -- Spectral theory and eigenvalue problems -- Asymptotic distribution of eigenvalues and eigenfunctions. msc
Systems theory; control -- Controllability, observability, and system structure -- Controllability. msc
Systems theory; control -- Controllability, observability, and system structure -- Observability. msc
TableOfContents Introduction and main results -- The quantitative Holmgren-John theorem of \cite{LL:15} -- The hypoelliptic wave equation, proof of Theorem 1.15 -- The hypoelliptic heat equation -- A partially analytic example: Grushin type operators -- On the optimality: Proof of Proposition 1.14 -- Subelliptic estimates -- Sub-Riemannian norm of normal vectors
Cover -- Title page -- Chapter 1. Introduction and main results -- 1.1. Introduction -- 1.2. Main results -- 1.3. Comparison to other works -- 1.4. Sketch of the proofs and plan of the paper -- 1.5. Some remarks and further comments -- Chapter 2. The quantitative Holmgren-John theorem of [LL19] -- 2.1. A typical quantitative unique continuation result of [LL19] -- 2.2. Definitions and tools for propagating the information -- 2.3. Semiglobal estimates along foliation by hypersurfaces -- Chapter 3. The hypoelliptic wave equation, proof of Theorem 1.15 -- 3.1. Step 1: Geometric setting and non-characteristic hypersurfaces -- 3.2. Step 2: Propagation of smallness -- 3.3. Step 3: Energy estimates -- Chapter 4. The hypoelliptic heat equation -- 4.1. Approximate controllability with polynomial cost in large time: Proof of Theorem 1.22 -- 4.2. Approximate controllability in Gevrey-type spaces: Proof of Theorem 1.20 -- 4.3. Approximate controllability in natural spaces with exponential cost: Proof of Theorem 1.18 -- 4.4. Technical lemmata used for the heat equation -- Chapter 5. A partially analytic example: Grushin type operators -- 5.1. The geometric context -- 5.2. A proof of Estimate (1.26) -- 5.3. An observation term in ² in quantitative unique continuation estimates -- Appendix A. On the optimality: Proof of Proposition 1.14 -- Appendix B. Subelliptic estimates -- B.1. ^{ } subelliptic estimates on compact manifolds -- B.2. Subelliptic estimates for manifolds with boundaries -- Appendix C. Sub-Riemannian norm of normal vectors -- Bibliography -- Back Cover
Title Tunneling estimates and approximate controllability for hypoelliptic equations
URI https://www.ams.org/memo/1357/
https://cir.nii.ac.jp/crid/1130010754488603784
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6939723
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470470234
Volume 276
WOSCitedRecordID wos0000060027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Pb9MwFMctWjjQEz9F2YYsxDWafyROfF1VQAIVDgPtFiWOIyLWtFuaqfz3ey9O3Kg7IA5crDqKYuV9XfvZfvk8Qj5EskxKLmD0s5EKQhNFQV5kOlBaGJ2LslBF0SWbiFer5OpKf-_zhDZdOoG4rpP9Xm__q9RwDcTGT2f_QW7_ULgAv0F0KEF2KI88Yl_tFW8xZgWX_kjOWKMT6VCsiA3fdxeGyPRrR-d2wZq__mw3iOXcIrvV3rSjPbyOyNgiwMkFh2COIt8TvrpD9qzdZa1LTYy5wyvbjncShDjaSTgcEXlgLAJJNp5I4pedPIwRSyPdVPlgEGYaoxbXdr3BbQHpANRHVOuLBQzRyPtSEzKJFSybH39afvvxxe-PCSTJadl9ize0NiC6hvpAitLsHFs7x7Y6Ym4zI7Os-Q3TBEwhO6hN6qp6MNt2LsTlMzLFz0qek0e2fkFmh5dvXpKVV4565SgoR0fK0SPlKChHx8pRr9wr8vPj8nLxOejzXASZAHd5H5ScW2WkiXG1LWJRcMNMpAqe6NIoleTgRkcGPV0jmIW_ESw7jcFcAhkLY2vlazKtN7V9Q2gG_i3Lhc2jWIYR-O8GnGiEGiIXjwsxJ6dgnrQ7iW9SF4HAUrReitabk_cju6V31_2Ng9ljcPHCOTkDc6amwpLjeShnyFFMEsUkvMOc0MHQrqE-zjhdXiyUlpjn7u1fHnFCnh566CmZ7m5be0aemLtd1dy-6_vKPUUxV4c
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Tunneling+estimates+and+approximate+controllability+for+hypoelliptic+equations&rft.au=Laurent%2C+Camille&rft.au=L%C3%A9autaud%2C+Matthieu&rft.date=2022-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470451387&rft_id=info:doi/10.1090%2Fmemo%2F1357&rft.externalDocID=BC14606306
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470470234.jpg