Tunneling estimates and approximate controllability for hypoelliptic equations
This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator The first result is the tunneling estimate The main result is a stability estimate for solutions to the hypoelliptic wave equation We then prove the approximate controllabilit...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Format: | E-Book Buch |
| Sprache: | Englisch |
| Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
2022
|
| Ausgabe: | 1 |
| Schriftenreihe: | Memoirs of the American Mathematical Society |
| Schlagworte: |
Partial differential equations
> Close-to-elliptic equations and systems
> Hypoelliptic equations. msc
Partial differential equations
> Qualitative properties of solutions
> Continuation and prolongation of solutions. msc
Partial differential equations
> Spectral theory and eigenvalue problems
> Asymptotic distribution of eigenvalues and eigenfunctions. msc
|
| ISBN: | 1470451387, 9781470451387 |
| ISSN: | 0065-9266, 1947-6221 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator
The first result is the tunneling estimate
The main
result is a stability estimate for solutions to the hypoelliptic wave equation
We then prove the approximate controllability of the
hypoelliptic heat equation
We also explain how the analyticity
assumption can be relaxed, and a boundary
Most results turn out to be optimal on a family of Grushin-type operators.
The main proof relies on the
general strategy to produce quantitative unique continuation estimates, developed by the authors in Laurent-Léautaud (2019). |
|---|---|
| Bibliographie: | Includes bibliographical references (p. 91-95) March 2022, volume 276, number 1357 (fifth of 7 numbers) |
| ISBN: | 1470451387 9781470451387 |
| ISSN: | 0065-9266 1947-6221 |
| DOI: | 10.1090/memo/1357 |

