Tunneling estimates and approximate controllability for hypoelliptic equations

This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator The first result is the tunneling estimate The main result is a stability estimate for solutions to the hypoelliptic wave equation We then prove the approximate controllabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Laurent, Camille, Léautaud, Matthieu
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Providence, Rhode Island American Mathematical Society 2022
Ausgabe:1
Schriftenreihe:Memoirs of the American Mathematical Society
Schlagworte:
ISBN:1470451387, 9781470451387
ISSN:0065-9266, 1947-6221
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This memoir is concerned with quantitative unique continuation estimates for equations involving a “sum of squares” operator The first result is the tunneling estimate The main result is a stability estimate for solutions to the hypoelliptic wave equation We then prove the approximate controllability of the hypoelliptic heat equation We also explain how the analyticity assumption can be relaxed, and a boundary Most results turn out to be optimal on a family of Grushin-type operators. The main proof relies on the general strategy to produce quantitative unique continuation estimates, developed by the authors in Laurent-Léautaud (2019).
Bibliographie:Includes bibliographical references (p. 91-95)
March 2022, volume 276, number 1357 (fifth of 7 numbers)
ISBN:1470451387
9781470451387
ISSN:0065-9266
1947-6221
DOI:10.1090/memo/1357