Weight Multiplicities and Young Tableaux Through Affine Crystals
The weight multiplicities of finite dimensional simple Lie algebras can be computed individually using various methods. Still, it is hard to derive explicit closed formulas. Similarly, explicit closed formulas for the multiplicities of maximal weights of affine Kac–Moody algebras are not known in mo...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | eBook Book |
| Language: | English |
| Published: |
Providence, Rhode Island
American Mathematical Society
2023
|
| Edition: | 1 |
| Series: | Memoirs of the American Mathematical Society |
| Subjects: | |
| ISBN: | 1470459949, 9781470459949 |
| ISSN: | 0065-9266, 1947-6221 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Table of Contents:
- Introduction -- Affine Kac–Moody algebras -- Crystals and Young walls -- Young tableaux and almost even tableaux -- Lattice paths and triangular arrays -- Dominant maximal weights -- Weight multiplicities and (spin) rigid Young tableaux -- Level <inline-formula content-type="math/mathml"> 2 2 </inline-formula> weight multiplicities: Catalan and Pascal triangles -- Level <inline-formula content-type="math/mathml"> 3 3 </inline-formula> weight multiplicities: Motzkin and Riordan triangles -- Some level <inline-formula content-type="math/mathml"> k k </inline-formula> weight multiplicities when <inline-formula content-type="math/mathml"> k → ∞ k\to \infty </inline-formula>: Bessel triangle -- Standard Young tableaux with a fixed number of rows of odd length

