Multiplicative Invariant Fields of Dimension ≤6
The finite subgroups of
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Format: | E-Book Buch |
| Sprache: | Englisch |
| Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
2023
|
| Schriftenreihe: | Memoirs of the American Mathematical Society |
| Schlagworte: | |
| ISBN: | 9781470460228, 147046022X |
| ISSN: | 0065-9266, 1947-6221 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The finite subgroups of |
|---|---|
| AbstractList | The finite subgroups of |
| Author | Hoshi, Akinari Yamasaki, Aiichi Kang, Ming-chang |
| Author_xml | – sequence: 1 givenname: Akinari surname: Hoshi fullname: Hoshi, Akinari – sequence: 2 givenname: Ming-chang surname: Kang fullname: Kang, Ming-chang – sequence: 3 givenname: Aiichi surname: Yamasaki fullname: Yamasaki, Aiichi |
| BackLink | https://cir.nii.ac.jp/crid/1130014393804372135$$DView record in CiNii |
| BookMark | eNpFkM1KAzEUhaO24LR24RsM6HbsvTeZZLKUarVQcSNuhySTQHB-xNTiK_gePplPokMFN-cszsdZfDM26YfeM3aOcIWgYdn5bliiAH7EFlpVKBQIJUDgMctQC1VIIjz53yQQVROWAciy0CTllM0IiAOSlnjKFilFCyVJ0CWqjOHDe7uLr210Zhf3Pt_0e_MWTb_L19G3TcqHkN_EzvcpDn3-_fklz9g0mDb5xV_P2fP69ml1X2wf7zar621hCIA-isYEbIBbJxoAg-BQVUELK7XV2opGhYCV5xWCqWwg61zgjXCKhHRNIM7n7PJw3MdYuzgmIgdAwTWvQHBFyMtf7OKAmS7V3g7DS6oR6tFePdqrR3v8B8jqWe8 |
| ContentType | eBook Book |
| Copyright | Copyright 2023 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2023 American Mathematical Society |
| DBID | RYH |
| DOI | 10.1090/memo/1403 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781470474041 1470474042 |
| EISSN | 1947-6221 |
| ExternalDocumentID | BD01712705 10_1090_memo_1403 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 38. AABBV ABARN ABQPQ ADVEM AEPJP AERYV AFOJC AJFER BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a2002x-daf1d03bc4d00a10c178f94b69b99b4d7ff18e3810a8bf2bccf3d4c7246cdf233 |
| ISBN | 9781470460228 147046022X |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000060453&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Jun 27 00:38:55 EDT 2025 Thu Aug 14 15:25:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | unramified Brauer groups crystallographic groups integral representations Rationality problems algebraic tori Noether’s problem |
| LCCN | 2023012961 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a2002x-daf1d03bc4d00a10c178f94b69b99b4d7ff18e3810a8bf2bccf3d4c7246cdf233 |
| Notes | Includes bibliographical references (p. 135-137) Other authors: Ming-chang Kang, Aiichi Yamasaki March 2023, volume 283, number 1403 (sixth of 7 numbers) |
| ParticipantIDs | nii_cinii_1130014393804372135 ams_ebooks_10_1090_memo_1403 |
| PublicationCentury | 2000 |
| PublicationDate | 2023. |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023. |
| PublicationDecade | 2020 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, RI |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2023 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssib052609517 ssj0008047 ssj0002865190 ssib056432286 |
| Score | 2.6601367 |
| Snippet | The finite subgroups of |
| SourceID | nii ams |
| SourceType | Publisher |
| TableOfContents | Introduction
--
Preliminaries and the unramified Brauer groups
--
CARAT ID of the <inline-formula content-type="math/mathml">
Z \mathbb {Z} </inline-formula>-classes in dimensions
<inline-formula content-type="math/mathml"> 5 5 </inline-formula> and <inline-formula
content-type="math/mathml"> 6 6 </inline-formula>
--
Proof of Theorem
--
Classification of elementary abelian groups <inline-formula content-type="math/mathml"> ( C 2 ) k (C_2)^k </inline-formula> in <inline-formula
content-type="math/mathml"> G L n
( Z
) GL_n(\mathbb
{Z}) </inline-formula> with <inline-formula content-type="math/mathml"> n ≤
7 n\leq 7
</inline-formula>
--
The case <inline-formula content-type="math/mathml"> G = ( C 2 ) 3 G=(C_2)^3 </inline-formula> with <inline-formula
content-type="math/mathml"> H u
2 ( G , M
) ≠ 0 H_u^2(G,M)\neq 0 </inline-formula>
--
The case <inline-formula content-type="math/mathml">
G = A 6
G=A_6 </inline-formula>
with <inline-formula content-type="math/mathml"> H
u 2 ( G ,
M ) ≠ 0
H_u^2(G,M)\neq 0 </inline-formula>
and Noether’s problem for <inline-formula content-type="math/mathml"> N ⋊
A 6 N\rtimes
A_6 </inline-formula>
--
Some lattices of rank <inline-formula content-type="math/mathml">
2 n + 2 ,
4 n 2n+2, 4n
</inline-formula>, and <inline-formula content-type="math/mathml"> p (
p − 1 )
p(p-1)
</inline-formula>
--
GAP computation: an algorithm to compute <inline-formula content-type="math/mathml">
H u 2 (
G , M ) H_u^2(G,M) </inline-formula>
--
Tables: multiplicative invariant fields with non-trivial unramified Brauer groups |
| Title | Multiplicative Invariant Fields of Dimension ≤6 |
| URI | https://www.ams.org/memo/1403/ https://cir.nii.ac.jp/crid/1130014393804372135 |
| Volume | 283 |
| WOSCitedRecordID | wos0000060453&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVgYAGr8hItLcoCViiqX-PHciiFSojCoqDZRY4fIoJJqqaM5hf4D76ML8HXyTilLBALNlbiSLHsEznX995zLkLPpPCURtO4ZEzykgcVSmUFLYEzGYKwSmqTik3I01O1XOoPo_Jun8oJyLZVm40-_69Qx74INlBn_wHu_NLYEa8j6LGNsMf2mkWcb8eCTENuYHLCrUELZB3PwSZpL_mvLqVsONDy7xPikOSgny8mz9xJ16cCvy8WX4Cj2-StePQov4s_uTKREfJOYVamN0Pd60XT2M_NVR8CZdd8CFNwKEvFghRJl7VI8oGTcAmRVDoQuv_YfrGGfMWVX3WJx4_Z9JfJuX8vX4FED5UgPHtTinhgvvXm-P3Ht9kzBlzZaKYkFt442nIrzrUdfasRpfEhjHYIYyWt3D62bdNcsRHOdtAMeCP30A3f3kd3pzn2DxD5HZoiQ1MM0BRdKDI0xc_vP8RD9On18dnRSTnWqigNpLlsSmcCcZjVljuMDcGWSBU0r4Wuta65kyEQ5UFPzag60NrawBy3knJhXaCMPUKztmv9Y1QIz2oaTUfvBeWBeiWUE5LMA3dzXGu8i_bjRKsUTe-rIYsAV7AOFazDLjqIK1DZBloC4cpoE2umQMWKEjbf-8vzJ-jO9I3so9nlxTd_gG7b9WXTXzwd0foFlg0oVg |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Multiplicative+invariant+fields+of+dimension+%E2%89%A46&rft.au=Hoshi%2C+Akinari&rft.au=Kang%2C+Ming-Chang&rft.au=Yamasaki%2C+Aiichi&rft.date=2023-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470460228&rft_id=info:doi/10.1090%2Fmemo%2F1403&rft.externalDocID=BD01712705 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0065-9266&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0065-9266&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0065-9266&client=summon |

