Brownian regularity for the Airy line ensemble, and multi-polymer watermelons in Brownian last passage percolation
The Airy line ensemble is a positive-integer indexed system of random continuous curves whose finite dimensional distributions are given by the multi-line Airy process. It is a natural object in the KPZ universality class: for example, its highest curve, the Airy In this paper, we employ the Brownia...
Uložené v:
| Hlavný autor: | |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Providence, Rhode Island
American Mathematical Society
2022
|
| Vydanie: | 1 |
| Edícia: | Memoirs of the American Mathematical Society |
| Predmet: |
Probability theory and stochastic processes
> Stochastic analysis
> Stochastic partial differential equations. msc
Statistical mechanics, structure of matter
> Equilibrium statistical mechanics
> Exactly solvable models; Bethe ansatz. msc
|
| ISBN: | 9781470452292, 1470452294 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The Airy line ensemble is a positive-integer indexed system of random continuous curves whose finite dimensional distributions are
given by the multi-line Airy process. It is a natural object in the KPZ universality class: for example, its highest curve, the
Airy
In this paper, we employ the Brownian Gibbs property to make a close
comparison between the Airy line ensemble’s curves after affine shift and Brownian bridge, proving the finiteness of a superpolynomially
growing moment bound on Radon-Nikodym derivatives.
We also determine the value of a natural exponent describing in Brownian last
passage percolation the decay in probability for the existence of several near geodesics that are disjoint except for their common
endpoints, where the notion of ‘near’ refers to a small deficit in scaled geodesic energy, with the parameter specifying this nearness
tending to zero.
To prove both results, we introduce a technique that may be useful elsewhere for finding upper bounds on
probabilities of events concerning random systems of curves enjoying the Brownian Gibbs property.
Several results in this article
play a fundamental role in a further study of Brownian last passage percolation in three companion papers (Hammond 2017a,b,c), in which
geodesic coalescence and geodesic energy profiles are investigated in scaled coordinates. |
|---|---|
| Bibliografia: | May 2022, volume 277, number 1363 (fourth of 6 numbers) Includes bibliographical references (p. 131-133) |
| ISBN: | 9781470452292 1470452294 |
| ISSN: | 0065-9266 1947-6221 |
| DOI: | 10.1090/memo/1363 |

