Efficient model learning for dialog management
Intelligent planning algorithms such as the Partially Observable Markov Decision Process (POMDP) have succeeded in dialog management applications [10, 11, 12] because they are robust to the inherent uncertainty of human interaction. Like all dialog planning systems, however, POMDPs require an accura...
Uložené v:
| Vydané v: | 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI) s. 65 - 72 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY, USA
ACM
10.03.2007
IEEE |
| Edícia: | ACM Conferences |
| Predmet: | |
| ISBN: | 1595936173, 9781595936172 |
| ISSN: | 2167-2121 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Intelligent planning algorithms such as the Partially Observable Markov Decision Process (POMDP) have succeeded in dialog management applications [10, 11, 12] because they are robust to the inherent uncertainty of human interaction. Like all dialog planning systems, however, POMDPs require an accurate model of the user (e.g., what the user might say or want). POMDPs are generally specified using a large probabilistic model with many parameters. These parameters are difficult to specify from domain knowledge, and gathering enough data to estimate the parameters accurately a priori is expensive.In this paper, we take a Bayesian approach to learning the user model simultaneously with dialog manager policy. At the heart of our approach is an efficient incremental update algorithm that allows the dialog manager to replan just long enough to improve the current dialog policy given data from recent interactions. The update process has a relatively small computational cost, preventing long delays in the interaction. We are able to demonstrate a robust dialog manager that learns from interaction data, out-performing a hand-coded model in simulation and in a robotic wheelchair application. |
|---|---|
| Bibliografia: | SourceType-Conference Papers & Proceedings-1 ObjectType-Conference Paper-1 content type line 25 |
| ISBN: | 1595936173 9781595936172 |
| ISSN: | 2167-2121 |
| DOI: | 10.1145/1228716.1228726 |

