A domain theory for statistical probabilistic programming

We give an adequate denotational semantics for languages with recursive higher-order types, continuous probability distributions, and soft constraints. These are expressive languages for building Bayesian models of the kinds used in computational statistics and machine learning. Among them are untyp...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of ACM on programming languages Vol. 3; no. POPL; pp. 1 - 29
Main Authors: Vákár, Matthijs, Kammar, Ohad, Staton, Sam
Format: Journal Article
Language:English
Published: New York, NY, USA ACM 02.01.2019
Subjects:
ISSN:2475-1421, 2475-1421
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We give an adequate denotational semantics for languages with recursive higher-order types, continuous probability distributions, and soft constraints. These are expressive languages for building Bayesian models of the kinds used in computational statistics and machine learning. Among them are untyped languages, similar to Church and WebPPL, because our semantics allows recursive mixed-variance datatypes. Our semantics justifies important program equivalences including commutativity. Our new semantic model is based on `quasi-Borel predomains'. These are a mixture of chain-complete partial orders (cpos) and quasi-Borel spaces. Quasi-Borel spaces are a recent model of probability theory that focuses on sets of admissible random elements. Probability is traditionally treated in cpo models using probabilistic powerdomains, but these are not known to be commutative on any class of cpos with higher order functions. By contrast, quasi-Borel predomains do support both a commutative probabilistic powerdomain and higher-order functions. As we show, quasi-Borel predomains form both a model of Fiore's axiomatic domain theory and a model of Kock's synthetic measure theory.
ISSN:2475-1421
2475-1421
DOI:10.1145/3290349