Efficient Dual-Numbers Reverse AD via Well-Known Program Transformations

Where dual-numbers forward-mode automatic differentiation (AD) pairs each scalar value with its tangent value, dual-numbers reverse-mode AD attempts to achieve reverse AD using a similarly simple idea: by pairing each scalar value with a backpropagator function. Its correctness and efficiency on hig...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of ACM on programming languages Ročník 7; číslo POPL; s. 1573 - 1600
Hlavní autoři: Smeding, Tom J., Vákár, Matthijs I. L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 09.01.2023
Témata:
ISSN:2475-1421, 2475-1421
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Where dual-numbers forward-mode automatic differentiation (AD) pairs each scalar value with its tangent value, dual-numbers reverse-mode AD attempts to achieve reverse AD using a similarly simple idea: by pairing each scalar value with a backpropagator function. Its correctness and efficiency on higher-order input languages have been analysed by Brunel, Mazza and Pagani, but this analysis used a custom operational semantics for which it is unclear whether it can be implemented efficiently. We take inspiration from their use of linear factoring to optimise dual-numbers reverse-mode AD to an algorithm that has the correct complexity and enjoys an efficient implementation in a standard functional language with support for mutable arrays, such as Haskell. Aside from the linear factoring ingredient, our optimisation steps consist of well-known ideas from the functional programming community. We demonstrate the use of our technique by providing a practical implementation that differentiates most of Haskell98.
ISSN:2475-1421
2475-1421
DOI:10.1145/3571247