Souslin quasi-orders and bi-embeddability of uncountable structures

We provide analogues of the results from Friedman and Motto Ros (2011) and Camerlo, Marcone, and Motto Ros (2013) (which correspond to the case

Saved in:
Bibliographic Details
Main Authors: Andretta, Alessandro, Ros, Luca Motto
Format: eBook Book
Language:English
Published: Providence, Rhode Island American Mathematical Society 2022
Edition:1
Series:Memoirs of the American Mathematical Society
Subjects:
ISBN:9781470452735, 1470452731
ISSN:0065-9266, 1947-6221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We provide analogues of the results from Friedman and Motto Ros (2011) and Camerlo, Marcone, and Motto Ros (2013) (which correspond to the case
AbstractList We provide analogues of the results from Friedman and Motto Ros (2011) and Camerlo, Marcone, and Motto Ros (2013) (which correspond to the case
View the abstract.
Author Ros, Luca Motto
Andretta, Alessandro
Author_xml – sequence: 1
  fullname: Andretta, Alessandro
– sequence: 2
  fullname: Ros, Luca Motto
BackLink https://cir.nii.ac.jp/crid/1130292546417246623$$DView record in CiNii
BookMark eNpVkU1r20AQhrdJHGq7PvQfCNpDc1Azs5_aY2qSphDIIaXXZb9MF8vaRisl5N9Xjg0h8DJzmId5h3kX5KzLXSTkM8J3BA2Xu7jLl8ik-EBWWjXIFUzSSpyQOWquakkpnr7NBFVMnJE5gBS1plLOyIICncSg4edkgYwzyhst9EeyKiU5EFSC5BzmZP2Qx9KmrnocbUl17kPsS2W7ULlUx52LIViX2jS8VHlTjZ3PYzdY18aqDP3oh7GP5ROZbWxb4urYl-TPzfXv9W19d__z1_rqrraoKdJaTGd47yzzXgmJgXMfEGxwzLENboDGRnCpgm0CMgbYuAYajIFZEaTzki3JxWGxLdv4XP7mdijmqY0u520x7341sd8O7L8-P46xDOYV87Ebetua6x9rqhVDPX1pSb4e0C4l49O-IjKgmk7ncFSUS0nZhH05uu-KOXoimH1mZp-Z2WfG_gN40n07
ContentType eBook
Book
Copyright Copyright 2022 American Mathematical Society
Copyright_xml – notice: Copyright 2022 American Mathematical Society
DBID RYH
DEWEY 511.3/22
DOI 10.1090/memo/1365
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781470470975
1470470977
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470470975
EBC29731902
BC15264376
10_1090_memo_1365
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
YNT
YQT
38.
AABBV
ABARN
ABQPQ
ADAIA
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a19212-5432ccba3cc7561d44cd10adb3b3f1f02e85467da8d133018b8081ed3a5d6bc63
ISBN 9781470452735
1470452731
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000060199&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Wed Nov 12 00:25:50 EST 2025
Wed Dec 10 11:01:52 EST 2025
Fri Jun 27 00:50:53 EDT 2025
Thu Aug 14 15:25:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords non-separable Banach spaces
uncountable structures
Generalized descriptive set theory
<inline-formula content-type="math/mathml"> κ \kappa </inline-formula>-Souslin sets
infinitary logics
(bi-)embeddability
non-separable metric spaces
determinacy
LCCN 2022023084
LCCallNum_Ident QA248
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a19212-5432ccba3cc7561d44cd10adb3b3f1f02e85467da8d133018b8081ed3a5d6bc63
Notes Includes bibliographical references (p. 185-189)
May 2022, volume 277, number 1365 (sixth of 6 numbers)
OCLC 1343248959
PQID EBC29731902
PageCount 204
ParticipantIDs askewsholts_vlebooks_9781470470975
proquest_ebookcentral_EBC29731902
nii_cinii_1130292546417246623
ams_ebooks_10_1090_memo_1365
PublicationCentury 2000
PublicationDate [2022]
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: [2022]
PublicationDecade 2020
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, RI
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2022
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssib052606440
ssj0008047
ssj0002691055
Score 2.7915049
Snippet We provide analogues of the results from Friedman and Motto Ros (2011) and Camerlo, Marcone, and Motto Ros (2013) (which correspond to the case
View the abstract.
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Embeddings (Mathematics)
Mathematical logic and foundations -- Set theory -- Descriptive set theory. msc
Mathematical logic and foundations -- Set theory -- Determinacy principles. msc
Mathematical logic and foundations -- Set theory -- Inner models, including constructibility, ordinal definability, and core models. msc
Mathematical logic and foundations -- Set theory -- Ordinal and cardinal numbers. msc
Mathematical logic and foundations -- Set theory -- Other notions of set-theoretic definability. msc
Set theory
Topological spaces
TableOfContents Introduction -- Preliminaries and notation -- The generalized Cantor space -- Generalized Borel sets -- Generalized Borel functions -- The generalized Baire space and Baire category -- Standard Borel <inline-formula content-type="math/mathml"> κ \kappa </inline-formula>-spaces, <inline-formula content-type="math/mathml"> κ<!-- κ --> \kappa </inline-formula>-analytic quasi-orders, and spaces of codes -- Infinitary logics and models -- <inline-formula content-type="math/mathml"> κ<!-- κ --> \kappa </inline-formula>-Souslin sets -- The main construction -- Completeness -- Invariant universality -- An alternative approach -- Definable cardinality and reducibility -- Some applications -- Further completeness results -- Indexes
12.1. An \LL_{ ⁺ }-sentence \Uppsi describing the structures _{ }. -- 12.2. A classification of the structures in \Mod^{ }_{\Uppsi} up to isomorphism -- 12.3. The invariant universality of \embeds^{ }_{\CT} -- 12.4. More absoluteness results -- Chapter 13. An alternative approach -- 13.1. Completeness -- 13.2. Invariant universality -- Chapter 14. Definable cardinality and reducibility -- 14.1. Topological complexity -- 14.2. Absolutely definable reducibilities -- 14.3. Reducibilities in an inner model -- Chapter 15. Some applications -- 15.1. \bSigma¹₂ quasi-orders -- 15.2. Projective quasi-orders -- 15.3. More complex quasi-orders in models of determinacy -- 15.4. \Ll(\R)-reducibility -- Chapter 16. Further completeness results -- 16.1. Representing arbitrary partial orders as embeddability relations -- 16.2. Other model theoretic examples -- 16.3. Isometry and isometric embeddability between complete metric spaces of density character -- 16.4. Linear isometry and linear isometric embeddability between Banach spaces of density -- 16.5. *Further results on the classification of nonseparable metric and Banach spaces -- Indexes -- Index -- Index -- Bibliography -- Back Cover
Cover -- Title page -- Chapter 1. Introduction -- 1.1. What we knew -- 1.2. What we wanted -- 1.3. What we did -- 1.4. How we proved it -- 1.5. Classification of non-separable structures up to bi-embeddability -- 1.6. Organization of the paper, or: How (not) to read this paper -- 1.7. Annotated content -- Chapter 2. Preliminaries and notation -- 2.1. Basic notions -- 2.2. Choice and determinacy -- 2.3. Cardinality -- 2.4. Algebras of sets -- 2.5. Descriptive set theory -- 2.6. Trees and reductions -- Chapter 3. The generalized Cantor space -- 3.1. Basic facts -- 3.2. *More on 2^{ } -- Chapter 4. Generalized Borel sets -- 4.1. Basic facts -- 4.2. Intermezzo: the projective ordinals -- 4.3. *More on generalized Borel sets -- Chapter 5. Generalized Borel functions -- 5.1. Basic facts -- 5.2. *Further results -- Chapter 6. The generalized Baire space and Baire category -- 6.1. The generalized Baire space -- 6.2. Baire category -- Chapter 7. Standard Borel -spaces, -analytic quasi-orders, and spaces of codes -- 7.1. -analytic sets -- 7.2. Spaces of type and spaces of codes -- Chapter 8. Infinitary logics and models -- 8.1. Infinitary logics -- 8.2. Some generalizations of the Lopez-Escobar theorem -- Chapter 9. -Souslin sets -- 9.1. Basic facts -- 9.2. More on Souslin sets and Souslin cardinals -- 9.3. Souslin sets and cardinals in models with choice -- 9.4. Souslin sets and cardinals in models of determinacy -- Chapter 10. The main construction -- 10.1. The combinatorial trees ₀ and ₁ -- 10.2. The combinatorial trees _{ } -- Chapter 11. Completeness -- 11.1. Faithful representations of -Souslin quasi-orders -- 11.2. The quasi-order ≤_{max} and the reduction Σ_{ } -- 11.3. Reducing ≤_{max}^{ } to \embeds^{ }_{\CT} -- 11.4. Some absoluteness results -- Chapter 12. Invariant universality
Title Souslin quasi-orders and bi-embeddability of uncountable structures
URI https://www.ams.org/memo/1365/
https://cir.nii.ac.jp/crid/1130292546417246623
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=29731902
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470470975
Volume 277
WOSCitedRecordID wos0000060199&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELW62x66JwpU3QJVqLhGJHYS20dYbVupiPZAEbfIXytFZZOKZBE_nxnna7Ucqh56sTZRZGvnRZ6JZ-Y9Qs4YdYopGvsMYwj-OA0l5TrUTGhuwcUp69n1r_j1tbi7kz87AubaywnwshRPT_LPf4Ua7gHY2Dr7D3APk8IN-A2gwwiww7gTEQ-XfaftBoNG7JOsi9BzarYEzLoI3Vo7a1tObp9TB3eGKhG-carlkN08jOWEvsyxaQPLi3tUSUFegzE548G_2hgFe0LTVNtHB5TuHB2MOaGBIRYZSKqBgmT4zowTjtTrvGUWebHrRhLLFNduXeE5AGvFH3ZorC8XEClgljCbkAnP4Dv59dflj1_fhwMxmkkU6_TNd91qcc_J1a_eU0PJ6BxXO8e1PEVuPSMzVf8GvwA-o4GrSVkUL9yrjxlu9sgU-0jekVeu3Cez8c_XB2TRQRVsQxWAjYNdqIJqFWxBFYxQHZLbL8ubxbewU7MIFXLOoeIEo8ZoxYzhELXaJDE2jpTVTLNVvIqoEym4LauEjRnsu0KjKoqzTKU20yZj78m0rEr3gQRKC5HIyDIpYJpUSsdSo1KnRaKYlmJOjsEmuc-313lbZxDlaLIcTTYnn7eMlT_edw_2tuaR5PDQCdgwNwWOMea3JWonJBDxJhkEzXNy2lu3XairJs6XlwsviCYj-vEvcxyRt-N7eUymYEN3Qt6Yx6aoHz51b8gzEw5OTg
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Souslin+quasi-orders+and+bi-embeddability+of+uncountable+structures&rft.au=Andretta%2C+Alessandro&rft.au=Ros%2C+Luca+Motto&rft.date=2022-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470452735&rft_id=info:doi/10.1090%2Fmemo%2F1365&rft.externalDocID=BC15264376
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470470975.jpg