Best-Response Multiagent Learning in Non-Stationary Environments

This paper investigates a relatively new direction in Multiagent Reinforcement Learning. Most multiagent learning techniques focus on Nash equilibria as elements of both the learning algorithm and its evaluation criteria. In contrast, we propose a multiagent learning algorithm that is optimal in the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Autonomous Agents and Multiagent Systems: Proceedings, 3rd International Joint Conference, New York City, New York, 2004. s. 506 - 513
Hlavní autori: Weinberg, Michael, Rosenschein, Jeffrey S.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Washington, DC, USA IEEE Computer Society 19.07.2004
IEEE
Edícia:ACM Conferences
Predmet:
ISBN:9781581138641, 1581138644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper investigates a relatively new direction in Multiagent Reinforcement Learning. Most multiagent learning techniques focus on Nash equilibria as elements of both the learning algorithm and its evaluation criteria. In contrast, we propose a multiagent learning algorithm that is optimal in the sense of finding a best-response policy, rather than in reaching an equilibrium. We present the first learning algorithm that is provably optimal against restricted classes of non-stationary opponents. The algorithm infers an accurate model of the opponentýs non-stationary strategy, and simultaneously creates a best-response policy against that strategy. Our learning algorithm works within the very general framework of n-player, general-sum stochastic games, and learns both the game structure and its associated optimal policy.
Bibliografia:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:9781581138641
1581138644
DOI:10.5555/1018410.1018798