Positive Gaussian Kernels also Have Gaussian Minimizers

We study lower bounds on multilinear operators with Gaussian kernels acting on Lebesgue spaces, with exponents below one. We put forward natural conditions when the optimal constant can be computed by inspecting centered Gaussian functions only, and we give necessary and sufficient conditions for th...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Barthe, Franck, Wolff, Paweł
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2022
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:9781470451431, 1470451433
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study lower bounds on multilinear operators with Gaussian kernels acting on Lebesgue spaces, with exponents below one. We put forward natural conditions when the optimal constant can be computed by inspecting centered Gaussian functions only, and we give necessary and sufficient conditions for this constant to be positive. Our work provides a counterpart to Lieb’s results on maximizers of multilinear operators with real Gaussian kernels, also known as the multidimensional Brascamp-Lieb inequality. It unifies and extends several inverse inequalities.
Bibliografie:Includes bibliographical references (p. 89-90)
March 2022, volume 276, number 1359 (seventh of 7 numbers)
ISBN:9781470451431
1470451433
ISSN:0065-9266
1947-6221
DOI:10.1090/memo/1359