SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning
Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV algorithms to diverse matrices and architectures requires a framework capable of accurately recognizing sparse patterns and selecting the optimal...
Gespeichert in:
| Veröffentlicht in: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
22.06.2025
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV algorithms to diverse matrices and architectures requires a framework capable of accurately recognizing sparse patterns and selecting the optimal implementation. In this work, we introduce Sparsity-aware SpMV (SSpMV), a framework that integrates expert-designed features with multimodal representations to adaptively predict the best-performing algorithm and parameters. For this purpose, we design a multimodal neural network called MM-Adapter, to capture diverse modalities to represent the computational features of SpMV. Experimental results demonstrate that MMAdapter achieves the highest accuracy of 81.05 \%, outperforming existing SpMV prediction models. Furthermore, SSpMV consistently delivers substantial performance improvements over state-of-the-art sparse libraries across various multi-core platforms. |
|---|---|
| AbstractList | Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV algorithms to diverse matrices and architectures requires a framework capable of accurately recognizing sparse patterns and selecting the optimal implementation. In this work, we introduce Sparsity-aware SpMV (SSpMV), a framework that integrates expert-designed features with multimodal representations to adaptively predict the best-performing algorithm and parameters. For this purpose, we design a multimodal neural network called MM-Adapter, to capture diverse modalities to represent the computational features of SpMV. Experimental results demonstrate that MMAdapter achieves the highest accuracy of 81.05 \%, outperforming existing SpMV prediction models. Furthermore, SSpMV consistently delivers substantial performance improvements over state-of-the-art sparse libraries across various multi-core platforms. |
| Author | Zhou, Joey Tianyi Ding, Yan Li, Kenli Lin, Shengle Yang, Wangdong Liu, Chubo |
| Author_xml | – sequence: 1 givenname: Shengle surname: Lin fullname: Lin, Shengle email: 1s1036@hnu.edu.cn organization: Hunan University,College of Computer Science and Electronic Engineering,China – sequence: 2 givenname: Chubo surname: Liu fullname: Liu, Chubo email: liuchubo@hnu.edu.cn organization: Hunan University,College of Computer Science and Electronic Engineering,China – sequence: 3 givenname: Yan surname: Ding fullname: Ding, Yan email: ding@hnu.edu.cn organization: Hunan University,College of Computer Science and Electronic Engineering,China – sequence: 4 givenname: Joey Tianyi surname: Zhou fullname: Zhou, Joey Tianyi email: zhouty@cfar.a-star.edu.sg organization: Centre for Frontier AI Research, Agency for Science, Technology and Research,Singapore – sequence: 5 givenname: Kenli surname: Li fullname: Li, Kenli email: 1k1@hnu.edu.cn organization: Hunan University,College of Computer Science and Electronic Engineering,China – sequence: 6 givenname: Wangdong surname: Yang fullname: Yang, Wangdong email: yangwangdong@hnu.edu.cn organization: Hunan University,College of Computer Science and Electronic Engineering,China |
| BookMark | eNo1j81KxDAYACPoQdd9A5G8QNcvSZsm3krdXYWWPVS9LmnzRYP9I1spfXsV9TQwh4G5Iuf90CMhtww2jIG-e8hyKVSsNxx48q2Y4ErLM7LWqVZCsAQExOqSHKpqLF_vaUar0YSTn5bIzCYg_dF0F0yH8xA-6LYbhxkDWlovtPxsJ98N1rS0NM2775EWaELv-7drcuFMe8L1H1fkZbd9zh-j4rB_yrMiMizVU2RrTJwTjisFII1TSWo5xo5xoRSHBByksQSuG47SomBWg-Milbxhtua1WJGb365HxOMYfGfCcvz_FF9hqEvM |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC63849.2025.11132896 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331503048 |
| EndPage | 7 |
| ExternalDocumentID | 11132896 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a179t-dbe5ff3f288006af857d2e4f123882050f0746029c2e6de31d90f23762c1db2b3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 01 07:05:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a179t-dbe5ff3f288006af857d2e4f123882050f0746029c2e6de31d90f23762c1db2b3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_11132896 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-22 |
| PublicationDateYYYYMMDD | 2025-06-22 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 62nd ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.2951274 |
| Snippet | Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Libraries Machine learning Machine learning algorithms Neural networks Pattern recognition Prediction algorithms Predictive models Scientific computing Sparse matrices Sparse Matrix SpMV |
| Title | SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning |
| URI | https://ieeexplore.ieee.org/document/11132896 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA22ePCkYsVvcvCaNpvdzSbeSm3xYGuhWnor2Z2JCLZdaqv4703SreLBg7cwBAKTPGZI3ssj5BpdDXMQAiYiUCyJIWVagmRRnqdGg7AQtFXj-2wwUJOJHlZi9aCFQcRAPsOmH4a3fFgUa39V1gq26ErLGqllmdyItSrVb8R167bdcacp8fITkTa3k3_ZpoSq0dv_53oHpPGjv6PD78pySHZwfkQeRqOyP76hbToqTaBSMPNhlkh9mPa2JCvanZXe-QyB5p806GtnCzCvtB9ok0irH1WfG-Sp133s3LHKDoEZh5oVgxxTa2MrHOS4NFalGQhMrKs9rk3mKbfeO4QLXQiUgHEEmltPehFFBLnI42NSny_meEKoEcLEuuCu-dMJVw6jUiFmueWgYhPJU9Lw2ZiWmx8vpttEnP0RPyd7PueeQiXEBamvlmu8JLvF--rlbXkV9ukLqD6Trg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aBT2pWPHbHLymzWY_mngrtUWxrYXW0lvJ7kxEsO1SW8V_b5JuFQ8evIUhEJjkMUPyXh4h12hrmIUQMBGAZFEIMVMJJCxI01grEAa8tmrYrnW7cjRSvUKs7rUwiOjJZ1hxQ_-WD7Ns6a7Kqt4WXapkk2zFUST4Sq5V6H4Drqq39YY9T5EToIi4sp7-yzjF143W3j9X3CflHwUe7X3XlgOygdND8tjv553hDa3Tfq49mYLpDz1H6sK0taZZ0eYkd95nCDT9pF5hO5mBfqUdT5xEWvyp-lwmT63moHHHCkMEpi1uFgxSjI0JjbCg44k2Mq6BwMjY6mMbZR5z49xDuFCZwAQwDEBx42gvIgsgFWl4RErT2RSPCdVC6FBl3LZ_KuLSojSRiLXUcJChDpITUnbZGOerPy_G60Sc_hG_Ijt3g0573L7vPpyRXZd_R6gS4pyUFvMlXpDt7H3x8ja_9Hv2BYjWlvU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=SSpMV%3A+A+Sparsity-aware+SpMV+Framework+Empowered+by+Multimodal+Machine+Learning&rft.au=Lin%2C+Shengle&rft.au=Liu%2C+Chubo&rft.au=Ding%2C+Yan&rft.au=Zhou%2C+Joey+Tianyi&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11132896&rft.externalDocID=11132896 |