SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning

Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV algorithms to diverse matrices and architectures requires a framework capable of accurately recognizing sparse patterns and selecting the optimal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autoři: Lin, Shengle, Liu, Chubo, Ding, Yan, Zhou, Joey Tianyi, Li, Kenli, Yang, Wangdong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV algorithms to diverse matrices and architectures requires a framework capable of accurately recognizing sparse patterns and selecting the optimal implementation. In this work, we introduce Sparsity-aware SpMV (SSpMV), a framework that integrates expert-designed features with multimodal representations to adaptively predict the best-performing algorithm and parameters. For this purpose, we design a multimodal neural network called MM-Adapter, to capture diverse modalities to represent the computational features of SpMV. Experimental results demonstrate that MMAdapter achieves the highest accuracy of 81.05 \%, outperforming existing SpMV prediction models. Furthermore, SSpMV consistently delivers substantial performance improvements over state-of-the-art sparse libraries across various multi-core platforms.
DOI:10.1109/DAC63849.2025.11132896