SSpMV: A Sparsity-aware SpMV Framework Empowered by Multimodal Machine Learning
Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV algorithms to diverse matrices and architectures requires a framework capable of accurately recognizing sparse patterns and selecting the optimal...
Uloženo v:
| Vydáno v: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.06.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse operation in scientific computing and artificial intelligence. Efficiently adapting SpMV algorithms to diverse matrices and architectures requires a framework capable of accurately recognizing sparse patterns and selecting the optimal implementation. In this work, we introduce Sparsity-aware SpMV (SSpMV), a framework that integrates expert-designed features with multimodal representations to adaptively predict the best-performing algorithm and parameters. For this purpose, we design a multimodal neural network called MM-Adapter, to capture diverse modalities to represent the computational features of SpMV. Experimental results demonstrate that MMAdapter achieves the highest accuracy of 81.05 \%, outperforming existing SpMV prediction models. Furthermore, SSpMV consistently delivers substantial performance improvements over state-of-the-art sparse libraries across various multi-core platforms. |
|---|---|
| DOI: | 10.1109/DAC63849.2025.11132896 |