ChipAlign: Instruction Alignment in Large Language Models for Chip Design via Geodesic Interpolation

Recent advancements in large language models (LLMs) have expanded their application across various domains, including chip design, where domain-adapted chip models like ChipNeMo have emerged. However, these models often struggle with instruction alignment, a crucial capability for LLMs that involves...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autoři: Deng, Chenhui, Bai, Yunsheng, Ren, Haoxing
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recent advancements in large language models (LLMs) have expanded their application across various domains, including chip design, where domain-adapted chip models like ChipNeMo have emerged. However, these models often struggle with instruction alignment, a crucial capability for LLMs that involves following explicit human directives. This limitation impedes the practical application of chip LLMs, including serving as assistant chatbots for hardware design engineers. In this work, we introduce ChipAlign, a novel approach that utilizes a training-free model merging strategy, combining the strengths of a general instruction-aligned LLM with a chip-specific LLM. By considering the underlying manifold in the weight space, ChipAlign employs geodesic interpolation to effectively fuse the weights of input LLMs, producing a merged model that inherits strong instruction alignment and chip expertise from the respective instruction and chip LLMs. Our results demonstrate that ChipAlign significantly enhances instruction-following capabilities of existing chip LLMs, achieving up to a 26.6% improvement on the IFEval benchmark, while maintaining comparable expertise in the chip domain. This improvement in instruction alignment also translates to notable gains in instruction-involved QA tasks, delivering performance enhancements of 3.9% on the OpenROAD QA benchmark and 8.25% on production-level chip QA benchmarks, surpassing state-of-the-art baselines.
DOI:10.1109/DAC63849.2025.11132537