GLiTCH: GLiTCH induced Transitions for Secure Crypto-Hardware
Conventionally, glitch reduction is well-studied in digital design to improve power, efficiency, and security. In contrast, this paper combines the addition and removal of glitches to minimize the power side-channel leakage. Glitch Manipulation is achieved through gate sizing-based arrival time cont...
Gespeichert in:
| Veröffentlicht in: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
22.06.2025
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Conventionally, glitch reduction is well-studied in digital design to improve power, efficiency, and security. In contrast, this paper combines the addition and removal of glitches to minimize the power side-channel leakage. Glitch Manipulation is achieved through gate sizing-based arrival time control, which is cast as a Geometric Programming formulation. We develop a framework, GLiTCH, for glitch manipulation that is guided by functional and timing simulations. The framework is evaluated on popular cipher designs like AES, CLEFIA, and SM4. Our findings illustrate up to 52.82% improvement in the Guessing Entropy for a 38.74% area overhead on average across the evaluated ciphers. |
|---|---|
| DOI: | 10.1109/DAC63849.2025.11133057 |