Late Breaking Results: On-the-Fly Hadamard Hypervector Processing for Efficient Hyperdimensional Computing
Inspired by the human brain, Hyperdimensional Computing (HDC) processes information efficiently by operating in high-dimensional space using hypervectors. While previous works focus on optimizing pregenerated hypervectors in software, this study introduces a novel on-the-fly vector generation method...
Uložené v:
| Vydané v: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 2 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
22.06.2025
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Inspired by the human brain, Hyperdimensional Computing (HDC) processes information efficiently by operating in high-dimensional space using hypervectors. While previous works focus on optimizing pregenerated hypervectors in software, this study introduces a novel on-the-fly vector generation method in hardware with O(1) complexity, compared to the O(N) iterative search used in conventional approaches to find the best orthogonal hypervectors. Our approach leverages Hadamard binary coefficients and unary computing to simplify encoding into addition-only operations after the generation stage in ASIC, implemented using inmemory computing. The proposed design significantly improves accuracy and computational efficiency across multiple benchmark datasets. |
|---|---|
| DOI: | 10.1109/DAC63849.2025.11133357 |