INSIGHT: A Universal Neural Simulator Framework for Analog Circuits with Autoregressive Transformers
The compute-intensive nature of SPICE simulations hinders effective analog design automation. This paper introduces INSIGHT, a data-efficient, adaptive, high-fidelity, technologyagnostic universal neural simulator framework that formulates analog performance prediction as an autoregressive sequence...
Uložené v:
| Vydané v: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
22.06.2025
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The compute-intensive nature of SPICE simulations hinders effective analog design automation. This paper introduces INSIGHT, a data-efficient, adaptive, high-fidelity, technologyagnostic universal neural simulator framework that formulates analog performance prediction as an autoregressive sequence generation task to accurately predict performance across diverse circuits. INSIGHT achieves test \mathbf{R}^{\mathbf{2}} scores \geq \mathbf{0. 9 5}, outperforming existing neural surrogates. Cross-technology transfer learning experiments show that INSIGHT can preserve model performance with \sim \mathbf{6 0 \%} less training data. Low-Rank Adaptation (LoRA) integration further reduces memory footprint by \sim 42 \% and training time by \sim 25 \%, maintaining high performance. Our experiments show that INSIGHT-based RL sizing framework achieves 100-1000 \times lower simulation costs over existing sizing methods for identical benchmarks and target specifications. |
|---|---|
| DOI: | 10.1109/DAC63849.2025.11133292 |