Clearance-Constrained PCB Global Placement with Heterogeneous Components
The complexity of design rules and intense time-to-market demands have made auto-placement tools essential for advanced printed circuit board (PCB) designs. This paper presents a novel PCB placement framework to handle pad-to-pad clearance constraints and heterogeneous components to address these ch...
Uloženo v:
| Vydáno v: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.06.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The complexity of design rules and intense time-to-market demands have made auto-placement tools essential for advanced printed circuit board (PCB) designs. This paper presents a novel PCB placement framework to handle pad-to-pad clearance constraints and heterogeneous components to address these challenges. Unlike existing academic placers, our framework focuses on the following key features: a wire-area model to account for various routing resource needs between power and signal nets, a pad-to-pad clearance model to minimize spacing violations, and a two-sided, pad-type-aware density model to reduce component and pad overlap. We further develop a quadratic programming-based legalizer to resolve constraint violations among components of varying shapes. Experimental results show the effectiveness and efficiency of our framework, surpassing two state-of-theart academic placers in post-routing quality on both academic and industrial benchmarks. |
|---|---|
| DOI: | 10.1109/DAC63849.2025.11133056 |