GSAcc: Accelerate 3D Gaussian Splatting via Depth Speculation and Gaussian-centric Rasterization

D Gaussian Splatting (3DGS) has emerged as a promising real-time photorealistic radiance field rendering technique. Existing GPU and hardware accelerators face limitations due to insufficient parallelism in sequential rendering pipeline stages and the memory overhead associated with interim results....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autoři: Yang, Mengtian, Wang, Yipeng, Lo, Chieh-Pu, Zhang, Xiuhao, Oruganti, Sirish, Kulkarni, Jaydeep P.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:D Gaussian Splatting (3DGS) has emerged as a promising real-time photorealistic radiance field rendering technique. Existing GPU and hardware accelerators face limitations due to insufficient parallelism in sequential rendering pipeline stages and the memory overhead associated with interim results. This paper presents GSAcc, a hardware accelerator co-designed with dataflow to render compressed 3DGS models on edge platforms efficiently. GSAcc enhances 3DGS rendering performance through several key innovations. First, it introduces Gaussian depth speculation, parallelizing preprocessing and sorting tasks. Second, GSAcc adopts a Gaussian-centric dataflow that interleaves preprocessing and rasterization, allowing all rendering steps to execute concurrently without storing intermediate results. Finally, it employs dedicated hardware acceleration to address sorting and rasterization bottlenecks within the optimized dataflow. We implemented and synthesized GSAcc using Intel16 PDK and evaluated its performance on real-world 3DGS scenes. Compared with desktop GPUs, GSAcc achieves up to 1.66 \times 10^{4} \mathrm{x} Power-Performance-Area (PPA) improvement as well as 48.7 x energy savings. Additionally, GSAcc outperforms the state-of-the-art hardware accelerator GSCore with up to 2.3x PPA improvement and 2.9x energy savings.
DOI:10.1109/DAC63849.2025.11133032