iG-kway: Incremental k-way Graph Partitioning on GPU
Recent advances in GPU-accelerated graph partitioning have achieved significant performance gains but remain limited to full graph partitioning, lacking support for incremental updates. This limitation is critical in CAD applications, where circuit graphs undergo iterative, incremental modifications...
Saved in:
| Published in: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) pp. 1 - 7 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
22.06.2025
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent advances in GPU-accelerated graph partitioning have achieved significant performance gains but remain limited to full graph partitioning, lacking support for incremental updates. This limitation is critical in CAD applications, where circuit graphs undergo iterative, incremental modifications during optimization. We present iG-kway, the first GPU-based incremental k-way graph partitioner. iG-kway features an incrementality-aware data structure and a refinement kernel that efficiently updates only affected vertices with minimal quality loss. Experiments show that iG-kway delivers up to 84 \times speedup over the state-of-the-art G-kway with comparable partitioning quality. |
|---|---|
| AbstractList | Recent advances in GPU-accelerated graph partitioning have achieved significant performance gains but remain limited to full graph partitioning, lacking support for incremental updates. This limitation is critical in CAD applications, where circuit graphs undergo iterative, incremental modifications during optimization. We present iG-kway, the first GPU-based incremental k-way graph partitioner. iG-kway features an incrementality-aware data structure and a refinement kernel that efficiently updates only affected vertices with minimal quality loss. Experiments show that iG-kway delivers up to 84 \times speedup over the state-of-the-art G-kway with comparable partitioning quality. |
| Author | Lee, Wan Luan Jiang, Shui Lin, Dian-Lun Chang, Che Zhang, Boyang Ho, Tsung-Yi Schlichtmann, Ulf Huang, Tsung-Wei Chung, Yi-Hua |
| Author_xml | – sequence: 1 givenname: Wan Luan surname: Lee fullname: Lee, Wan Luan email: wlee329@wisc.edu organization: University of Wisconsin-Madison,USA – sequence: 2 givenname: Shui surname: Jiang fullname: Jiang, Shui email: sjiang22@cse.cuhk.edu.hk organization: The Chinese University of Hong Kong,Hong Kong – sequence: 3 givenname: Dian-Lun surname: Lin fullname: Lin, Dian-Lun email: dianlun.lin@wisc.edu organization: University of Wisconsin-Madison,USA – sequence: 4 givenname: Che surname: Chang fullname: Chang, Che email: cchang289@wisc.edu organization: University of Wisconsin-Madison,USA – sequence: 5 givenname: Boyang surname: Zhang fullname: Zhang, Boyang email: bzhang523@wisc.edu organization: University of Wisconsin-Madison,USA – sequence: 6 givenname: Yi-Hua surname: Chung fullname: Chung, Yi-Hua email: yihua.chung@wisc.edu organization: University of Wisconsin-Madison,USA – sequence: 7 givenname: Ulf surname: Schlichtmann fullname: Schlichtmann, Ulf email: ulf.schlichtmann@tum.de organization: Technical University of Munich,Germany – sequence: 8 givenname: Tsung-Yi surname: Ho fullname: Ho, Tsung-Yi email: tyho@cse.cuhk.edu.hk organization: The Chinese University of Hong Kong,Hong Kong – sequence: 9 givenname: Tsung-Wei surname: Huang fullname: Huang, Tsung-Wei email: tsung-wei.huang@wisc.edu organization: University of Wisconsin-Madison,USA |
| BookMark | eNo1j8FKAzEURSPoQmv_QCQ_MDXJS2bmuSujjoWCXdh1ecm80dA2U-KA9O-tWFcHzoEL90ZcpiGxEPdazbRW-PA0b0qoLc6MMu6kNBhU9kJMscIaQDsFytbXwsa22H7T8VEuUsi85zTSTm6Lk5JtpsOnXFEe4xiHFNOHHJJsV-tbcdXT7ounZ07E-uX5vXktlm_topkvC9IVjgVw17PqEDF4b5Erhg6C8yWGTgUGNHXnAv3GmkLpAqIBr0vVa6qo8jARd3-7kZk3hxz3lI-b_zPwA_ELQ3o |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC63849.2025.11132904 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331503048 |
| EndPage | 7 |
| ExternalDocumentID | 11132904 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a179t-3edfe0d999cbb49e7e3d3c5b69cd0ce3928d5cacbb48ac65c9923b160f1a7a7b3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 01 07:05:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a179t-3edfe0d999cbb49e7e3d3c5b69cd0ce3928d5cacbb48ac65c9923b160f1a7a7b3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_11132904 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-22 |
| PublicationDateYYYYMMDD | 2025-06-22 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 62nd ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.302396 |
| Snippet | Recent advances in GPU-accelerated graph partitioning have achieved significant performance gains but remain limited to full graph partitioning, lacking... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Data structures Design automation Graphics processing units Iterative methods Kernel Optimization Partitioning algorithms Performance gain |
| Title | iG-kway: Incremental k-way Graph Partitioning on GPU |
| URI | https://ieeexplore.ieee.org/document/11132904 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECbaePCkxhrf4eCVlmWhLN5MtfVgmj3YpLdmGNikqdmautX474XdrcaDB2-ERwgMMF-G-WYIueEcUFgMr590nEkExSBBYKKQaCyIjEMt6Sc9mWSzmclbsnrNhfHe185nvheL9V--W-Emmsr6TVr0GP1zV2vdkLVa1m_CTf_-bhhOk4z0E6F6286_0qbUWmN08M_5Dkn3h39H82_NckR2fHlM5GLMlh_weUvDnW6sevBClyxU0XEMO03zeAxaAytdlXScT7tkOnp4Hj6yNudB2CJtKpZ6V3juAmxDa6Xx2qcuRWUHBh1HH9BM5hRCbMwABwpNQGg2GfAiAQ3apiekU65Kf0poGBOjv6dSQoANMuh-UFAURnkMk3BxRrpxyfPXJqzFfLva8z_qL8h-3NjoJyXEJelU642_Inv4Xi3e1te1ML4Ac8aMMw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBT2pWPFtDl7TZrNJd-NNqm3FWvbQQm9lMpuFUtmV2ir-e5PdreLBg7eQByGZJPMxmW-GkBvOAYVB9_rJlDOJoBgECExkErUBEXMoJT2MRqN4OtVJTVYvuTDW2tL5zLZ8sfzLTwtce1NZu0qL7qN_bispRVDRtWreb8B1-_6u686T9AQUoVqb7r8Sp5R6o7f_zxkPSPOHgUeTb91ySLZsfkTkvM8WH_B5S92trux68EIXzFXRvg88TRN_EGoTKy1y2k8mTTLpPYy7A1ZnPXCbFOkVC22aWZ464IbGSG0jG6YhKtPRmHK0Ds_EqULwjTFgR6F2GM0EHZ4FEEFkwmPSyIvcnhDqxvj476GU4ICDdNofFGSZVhbdJFyckqZf8uy1Cmwx26z27I_6a7I7GD8PZ8PH0dM52fOb7L2mhLggjdVybS_JDr6v5m_Lq1IwX_Hwj3o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=iG-kway%3A+Incremental+k-way+Graph+Partitioning+on+GPU&rft.au=Lee%2C+Wan+Luan&rft.au=Jiang%2C+Shui&rft.au=Lin%2C+Dian-Lun&rft.au=Chang%2C+Che&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11132904&rft.externalDocID=11132904 |