iG-kway: Incremental k-way Graph Partitioning on GPU

Recent advances in GPU-accelerated graph partitioning have achieved significant performance gains but remain limited to full graph partitioning, lacking support for incremental updates. This limitation is critical in CAD applications, where circuit graphs undergo iterative, incremental modifications...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autoři: Lee, Wan Luan, Jiang, Shui, Lin, Dian-Lun, Chang, Che, Zhang, Boyang, Chung, Yi-Hua, Schlichtmann, Ulf, Ho, Tsung-Yi, Huang, Tsung-Wei
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recent advances in GPU-accelerated graph partitioning have achieved significant performance gains but remain limited to full graph partitioning, lacking support for incremental updates. This limitation is critical in CAD applications, where circuit graphs undergo iterative, incremental modifications during optimization. We present iG-kway, the first GPU-based incremental k-way graph partitioner. iG-kway features an incrementality-aware data structure and a refinement kernel that efficiently updates only affected vertices with minimal quality loss. Experiments show that iG-kway delivers up to 84 \times speedup over the state-of-the-art G-kway with comparable partitioning quality.
DOI:10.1109/DAC63849.2025.11132904