Stratified sampling for even workload partitioning

This work presents a novel algorithm, Workload Partitioning and Scheduling (WPS), for evenly partitioning the computational workload of large implicitly-defined work-list based applications on distributed/shared-memory systems. WPS uses stratified sampling to estimate the number of work items that w...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PACT '14 : proceedings of the 23rd International Conference on Parallel Architectures and Compilation Techniques : August 24-27, 2014, Edmonton, AB, Canada s. 503 - 504
Hlavní autori: Paudel, Jeeva, Amaral, Jose Nelson
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: ACM 01.08.2014
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This work presents a novel algorithm, Workload Partitioning and Scheduling (WPS), for evenly partitioning the computational workload of large implicitly-defined work-list based applications on distributed/shared-memory systems. WPS uses stratified sampling to estimate the number of work items that will be processed in each step of an application. WPS uses such estimation to evenly partition and distribute the computational workload. An empirical evaluation on large applications - Iterative-Deepening A* (IDA*) applied to (4×4)-Sliding-Tile Puzzles, Delaunay Mesh Generation, and Delaunay Mesh Refinement - shows that WPS is applicable to a range of problems, and yields 28% to 49% speedups over existing work-stealing schedulers alone.
DOI:10.1145/2628071.2671422