Stratified sampling for even workload partitioning
This work presents a novel algorithm, Workload Partitioning and Scheduling (WPS), for evenly partitioning the computational workload of large implicitly-defined work-list based applications on distributed/shared-memory systems. WPS uses stratified sampling to estimate the number of work items that w...
Uložené v:
| Vydané v: | PACT '14 : proceedings of the 23rd International Conference on Parallel Architectures and Compilation Techniques : August 24-27, 2014, Edmonton, AB, Canada s. 503 - 504 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
ACM
01.08.2014
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This work presents a novel algorithm, Workload Partitioning and Scheduling (WPS), for evenly partitioning the computational workload of large implicitly-defined work-list based applications on distributed/shared-memory systems. WPS uses stratified sampling to estimate the number of work items that will be processed in each step of an application. WPS uses such estimation to evenly partition and distribute the computational workload. An empirical evaluation on large applications - Iterative-Deepening A* (IDA*) applied to (4×4)-Sliding-Tile Puzzles, Delaunay Mesh Generation, and Delaunay Mesh Refinement - shows that WPS is applicable to a range of problems, and yields 28% to 49% speedups over existing work-stealing schedulers alone. |
|---|---|
| DOI: | 10.1145/2628071.2671422 |