Social Model Shaping for Solving Generic DEC-POMDPs

Decentralized Partially Observable Markov Decision Problem, DEC-POMDP is a popular model to representmulti-agent decision making under uncertainty. However, the significant computational complexity involved in solving DECPOMDPshas limited their application. Recently, social model shaping (TREMOR and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Ročník 2; s. 180 - 187
Hlavní autor: Varakantham, P.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2011
Témata:
ISBN:9781457713736, 145771373X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Decentralized Partially Observable Markov Decision Problem, DEC-POMDP is a popular model to representmulti-agent decision making under uncertainty. However, the significant computational complexity involved in solving DECPOMDPshas limited their application. Recently, social model shaping (TREMOR and D-TREMOR algorithms) was introduced as an alternative to solve a sub-class of DEC-POMDPs. While scalability has been improved to even solve hundred agent problems, social model shaping has been restricted to solving a sub-class of DEC-POMDPs called Distributed POMDPs with Coordination Locales (DPCL). To that end, we make two significant contributions: (a) Firstly, we enhance the model shaping approach to solve general DEC-POMDPs where there is no restriction on the agent dependencies, and (b) Secondly, we provide theoretical justification for the model shaping heuristics. The key intuition is that not all interactions between agents occur at every time step. In addition to solving 100 agent problems in weakly coupled domains (due to extension from TREMOR and D-TREMOR), we are able to show that social model shaping achieves comparable performance to leading DEC-POMDP solvers (such as IMBDP, MBDP-OC, PBIP-IPGetc.) on tightly coupled benchmark problems.
AbstractList Decentralized Partially Observable Markov Decision Problem, DEC-POMDP is a popular model to representmulti-agent decision making under uncertainty. However, the significant computational complexity involved in solving DECPOMDPshas limited their application. Recently, social model shaping (TREMOR and D-TREMOR algorithms) was introduced as an alternative to solve a sub-class of DEC-POMDPs. While scalability has been improved to even solve hundred agent problems, social model shaping has been restricted to solving a sub-class of DEC-POMDPs called Distributed POMDPs with Coordination Locales (DPCL). To that end, we make two significant contributions: (a) Firstly, we enhance the model shaping approach to solve general DEC-POMDPs where there is no restriction on the agent dependencies, and (b) Secondly, we provide theoretical justification for the model shaping heuristics. The key intuition is that not all interactions between agents occur at every time step. In addition to solving 100 agent problems in weakly coupled domains (due to extension from TREMOR and D-TREMOR), we are able to show that social model shaping achieves comparable performance to leading DEC-POMDP solvers (such as IMBDP, MBDP-OC, PBIP-IPGetc.) on tightly coupled benchmark problems.
Author Varakantham, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Varakantham
  fullname: Varakantham, P.
  email: pradeepv@smu.edu.sg
  organization: Sch. of Inf. Syst., Singapore Manage. Univ., Singapore, Singapore
BookMark eNotTk1Lw0AUXFFBrTl78JI_sHHffuYdS1proKWFVDyWTfJWIzEpiQj-e1N1LvOGmXnMDbvo-o4YuwORAAh8eMl5Pt8nUgAkoM0Zi9Clwlk02oDS5796MpwD5ZS9YtE4vosJ1iIiXDNV9FXj23jT19TGxZs_Nt1rHPohLvr263SvqKOhqeLFMuO77WaxG2_ZZfDtSNE_z9jz43KfPfH1dpVn8zX3YOUnl4Fq0FQHQz6VSOhFahxCmaKdDCNdKKX25OrTnOCDU2VaV2KKTzUENWP3f38bIjoch-bDD98HK7RwTqsfvwpGaQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2011.145
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769545134
0769545130
EndPage 187
ExternalDocumentID 6040774
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a162t-2fed14edf5ea829e9a085791b896d14527fb24ae7d0066faf73b8dc05ea14e913
IEDL.DBID RIE
ISBN 9781457713736
145771373X
IngestDate Wed Aug 27 02:48:18 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a162t-2fed14edf5ea829e9a085791b896d14527fb24ae7d0066faf73b8dc05ea14e913
PageCount 8
ParticipantIDs ieee_primary_6040774
PublicationCentury 2000
PublicationDate 2011-Aug.
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-Aug.
PublicationDecade 2010
PublicationTitle 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology
PublicationTitleAbbrev wi-iat
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669991
ssj0001120470
Score 1.4665098
Snippet Decentralized Partially Observable Markov Decision Problem, DEC-POMDP is a popular model to representmulti-agent decision making under uncertainty. However,...
SourceID ieee
SourceType Publisher
StartPage 180
SubjectTerms Collision avoidance
Computational modeling
DEC-POMDP
Equations
Joints
Mathematical model
Multi-agent Systems
Reasoning under uncertainty
Robot kinematics
Title Social Model Shaping for Solving Generic DEC-POMDPs
URI https://ieeexplore.ieee.org/document/6040774
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwHP0FiQdPqGD8Tg8erfRr63o0fEQSRRJQuZG26yIJAcOHf7_tNsCDF2_r1iZbt-b39rb3HsCdFLERXGhsCDdYaBthHWcSW6aVThMibJ6x9P4s-_1kPFaDCtzvtDDOufznM_cQNvNv-enCbgJV1oz9E-fhygEcSBkXWq0dn-JLZ8A6e36FMiIkybVckfSvYpKPtxZPZTsurX4oUc2PHu49jgpLTxq0Tb-yVvJS06397ySPobHX7KHBrhqdQMXNT6G2DW1A5RquAy8EuSiEoM3Q8FMHwRTy0BUNF7PALqDciXpqUbvTwoPXl_Zg1YC3bmfUesJlcgLWNGZrzDKXUuHSLHI6YcopHYzsFTWJiv2BiMnMMKGdTMO8ZTqT3CSpJb67H6YoP4PqfDF354CMsYIbbbkkVogoMUR70MWp80AkZZpcQD3MweSrMMeYlJd_-ffuKzjakrKEXkN1vdy4Gzi03-vpanmb39EfOwuaNQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwHG0QTfSECsZve_BopV9b16PhIxABl4DKjbRdF0kIGAH_ftttgAcv3tatTbZuze_tbe89AO4FDzVnXCGNmUZcmQCpMBXIUCVVEmFusoylt54YDKLxWMYl8LDVwlhrs5_P7KPfzL7lJwuz9lRZPXRPnIMre2A_4JziXK21ZVRc8fRoZ8ewEIq5wJmaKxDuZUyw8cbkqWiHhdkPwbL-3kXdp1Fu6km8uulX2kpWbNqV_53mMajtVHsw3tajE1Cy81NQ2cQ2wGIVVwHLJbnQx6DN4PBDeckUdOAVDhczzy_AzIt6amCz1UDxS78ZL2vgtd0aNTqoyE5AioR0hWhqE8JtkgZWRVRaqbyVvSQ6kqE7EFCRasqVFYmft1SlgukoMdh1d8MkYWegPF_M7TmAWhvOtDJMYMN5EGmsHOxixDooklCFL0DVz8HkM7fHmBSXf_n37jtw2Bn1e5Ned_B8BY42FC0m16C8-lrbG3BgvlfT5ddtdnd_AHnHnXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE%2FWIC%2FACM+International+Conferences+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Social+Model+Shaping+for+Solving+Generic+DEC-POMDPs&rft.au=Varakantham%2C+P.&rft.date=2011-08-01&rft.pub=IEEE&rft.isbn=9781457713736&rft.volume=2&rft.spage=180&rft.epage=187&rft_id=info:doi/10.1109%2FWI-IAT.2011.145&rft.externalDocID=6040774
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/sc.gif&client=summon&freeimage=true