Optimum-Path Forest Theory, Algorithms, and Applications

The Optimum-Path Forest (OPF) classifier was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification.Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xavier Falcao, Alexandre, Papa, João Paulo
Format: E-Book
Sprache:Englisch
Veröffentlicht: Chantilly Elsevier Science & Technology 2022
Academic Press
Ausgabe:1
Schlagworte:
ISBN:9780128226889, 0128226889
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Optimum-Path Forest (OPF) classifier was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification.Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and biology.
AbstractList The Optimum-Path Forest (OPF) classifier was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification.Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and biology.
Optimum-Path Forest: Theory, Algorithms, and Applications was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification. Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and biology. In recent years, multi-label and semi-supervised versions were also developed to handle video classification problems. The book presents the principles, algorithms and applications of Optimum-Path Forest, giving the theory and state-of-the-art as well as insights into future directions.
Author Xavier Falcao, Alexandre
Papa, João Paulo
Author_xml – sequence: 1
  fullname: Xavier Falcao, Alexandre
– sequence: 2
  fullname: Papa, João Paulo
BookMark eNpVz81KAzEUBeCIP2jrrHwBd-JiIMlNbpKlDq0KhXZR3A6ZSUJLp5M6SfX1Haybri4HPg7nTshVH3t_QQqjNGVcc47a4OVZ1uaGTBg3DFBLI29JkdK2oUJJYELKO_KwPOTt_rgvVzZvHudx8Cnfk-tgu-SL_zsln_PZunovF8u3j-plUVomkOnSY8sdFY6Bkw6DCkx4CegCo6harsABWkFbE8BSDRSZpQEob8C0QTUGpuT5VGzTzv-kTexyqr8738S4S_XZW6N9OtnDEL-O48r6j7W-z4Pt6tlrhVpIHOUvo91Kvw
ContentType eBook
DEWEY 006.4
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9780128226896
0128226897
Edition 1
ExternalDocumentID 9780128226896
EBC6845696
GroupedDBID AAAAS
AABBV
AAKGN
AAKJW
AALRI
AANYM
AAVWF
AAWMN
AAXUO
AAZGR
ABGWT
ABIWA
ABLXK
ABQQC
ABRSK
ABSYO
ACDGK
ADBND
ADOAR
AECLD
AEHEP
AEYWH
AFNOJ
AFQEX
ALMA_UNASSIGNED_HOLDINGS
ALOLN
APVFW
ATDNW
BBABE
BSWCA
CETPU
E2F
HGY
L7C
SDK
SRW
UE6
ADDBX
ALBLE
O7H
ID FETCH-LOGICAL-a14618-e6c2d04d13d5d6f7f14e536df1067c273d36a40c9f3a083061a0f302b39cf7b93
ISBN 9780128226889
0128226889
IngestDate Fri Nov 08 03:52:16 EST 2024
Wed Sep 10 04:40:57 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TK7882.P3 .O685 2022
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a14618-e6c2d04d13d5d6f7f14e536df1067c273d36a40c9f3a083061a0f302b39cf7b93
OCLC 1291368595
PQID EBC6845696
PageCount 246
ParticipantIDs askewsholts_vlebooks_9780128226896
proquest_ebookcentral_EBC6845696
PublicationCentury 2000
PublicationDate 2022
2022-01-06
PublicationDateYYYYMMDD 2022-01-01
2022-01-06
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Chantilly
PublicationPlace_xml – name: Chantilly
PublicationYear 2022
Publisher Elsevier Science & Technology
Academic Press
Publisher_xml – name: Elsevier Science & Technology
– name: Academic Press
SSID ssib047531455
ssj0003150347
Score 2.3815296
Snippet The Optimum-Path Forest (OPF) classifier was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image...
Optimum-Path Forest: Theory, Algorithms, and Applications was first published in 2008 in its supervised and unsupervised versions with applications in medicine...
SourceID askewsholts
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Image processing
Pattern recognition systems
Subtitle Theory, Algorithms, and Applications
TableOfContents 6.2.2.5 Optimum-path forest based on k-connectivity -- 6.3 Methodology -- 6.3.1 Data set -- 6.3.2 Features set -- 6.3.3 Metrics -- 6.3.4 Experimental setup -- 6.4 Experimental results -- 6.4.1 Classification -- 6.4.2 Statistical analysis -- 6.4.3 Computational burden -- 6.5 Conclusions and future works -- References -- 7 Learning to weight similarity measures with Siamese networks: a case study on optimum-path forest -- 7.1 Introduction -- 7.2 Theoretical background -- 7.2.1 Optimum-path forest -- Training step -- Testing step -- 7.2.2 Siamese networks -- 7.3 Methodology -- 7.3.1 Proposed approach -- 7.3.2 Data sets -- 7.3.3 Experimental setup -- 7.4 Experimental results -- 7.4.1 BBC News -- 7.4.2 Caltech101 Silhouettes -- 7.4.3 MPEG-7 -- 7.4.4 Semeion -- 7.5 Conclusion -- References -- 8 An iterative optimum-path forest framework for clustering -- 8.1 Introduction -- 8.2 Related work -- 8.3 The iterative optimum-path forest framework -- 8.3.1 Seed set selection -- 8.3.2 Clustering by optimum-path forest -- 8.3.3 Seed recomputation -- 8.3.4 Returning the forest with lowest total path-cost -- 8.3.5 Algorithm outline -- 8.3.6 Application to object delineation -- 8.4 Experimental results -- 8.4.1 Object delineation by iterative dynamic trees -- 8.4.2 Analysis on road networks -- 8.4.3 Experiments on synthetic data sets -- 8.5 Conclusions and future work -- Acknowledgments -- References -- 9 Future trends in optimum-path forest classification -- References -- Index -- Back Cover
Front Cover -- Optimum-Path Forest -- Copyright -- Dedication -- Contents -- List of contributors -- Biography of the editors -- Preface -- 1 Introduction -- References -- 2 Theoretical background and related works -- 2.1 Introduction -- 2.2 The optimum-path forest framework -- 2.2.1 Theoretical background -- 2.2.2 Supervised learning -- 2.2.2.1 OPF using complete graph -- 2.2.2.2 OPF using k-nn graph -- 2.2.3 Semisupervised learning -- 2.2.4 Unsupervised learning -- 2.3 Applications -- 2.3.1 Supervised -- 2.3.1.1 Improvements in training -- 2.3.1.2 Improvements in classification -- 2.3.1.3 Variations in learning -- 2.3.1.4 Biological sciences -- 2.3.1.5 Biometrics -- 2.3.1.6 Electrical engineering -- 2.3.1.7 Geosciences and remote sensing -- 2.3.1.8 Image and video analysis -- 2.3.1.9 Materials engineering -- 2.3.1.10 Medicine -- 2.3.1.11 Network security -- 2.3.1.12 Feature selection -- 2.3.1.13 Petroleum exploration -- 2.3.1.14 Other applications -- 2.3.1.15 Voice recognition -- 2.3.2 Semisupervised -- 2.3.3 Unsupervised -- 2.3.3.1 Electrical engineering -- 2.3.3.2 Image and video processing -- 2.3.3.3 Medicine -- 2.3.3.4 Network security -- 2.3.3.5 Remote sensing images -- 2.3.3.6 Other applications -- 2.4 Conclusions and future trends -- Acknowledgments -- References -- 3 Real-time application of OPF-based classifier in Snort IDS -- 3.1 Introduction -- 3.2 Intrusion detection systems -- 3.2.1 Detection approaches in IDS -- 3.2.2 Anomaly detection techniques -- 3.2.3 Types of IDS -- 3.2.4 Open source IDS -- 3.2.4.1 Snort -- 3.3 Machine learning -- 3.3.1 Learning methods -- 3.3.2 Algorithms -- 3.3.2.1 Optimum-path forest -- 3.3.3 Metrics for effectiveness analysis -- 3.4 Methodology -- 3.4.1 CICIDS2017 data set -- 3.4.2 Data set balancing -- 3.4.3 ml_classifiers plugin -- 3.4.3.1 Network traffic flow management
3.4.3.2 Classification of network traffic flows -- 3.4.3.3 Plugin configuration -- 3.5 Experiments and results -- 3.5.1 First stage of experiments -- 3.5.1.1 Naive Bayes -- 3.5.1.2 Decision tree -- 3.5.1.3 Random forests -- 3.5.1.4 Support vector machine -- 3.5.1.5 Optimum-path forest -- 3.5.1.6 AdaBoost -- 3.5.1.7 Comparison of classification techniques -- 3.5.2 Second stage of experiments -- 3.5.2.1 DoS slowloris -- 3.5.2.2 DoS SlowHTTPTest -- 3.5.2.3 DoS hulk -- 3.5.2.4 Port scan -- 3.5.2.5 SSH brute force -- 3.6 Final considerations -- 3.6.1 Future works -- Acknowledgments -- References -- 4 Optimum-path forest and active learning approaches for content-based medical image retrieval -- 4.1 Introduction -- 4.2 Methodology -- 4.2.1 Active learning strategy -- 4.3 Experiments -- 4.3.1 Results and discussion -- 4.4 Conclusion -- 4.5 Funding and acknowledgments -- References -- 5 Hybrid and modified OPFs for intrusion detection systems and large-scale problems -- 5.1 Introduction -- 5.2 Modified OPF-based IDS using unsupervised learning and social network concept -- 5.3 Hybrid IDS using unsupervised OPF based on MapReduce approach -- 5.4 Hybrid IDS using modified OPF and selected features -- 5.5 Modified OPF using Markov cluster process algorithm -- 5.6 Modified OPF based on coreset concept -- 5.6.1 Partitioning step -- 5.6.2 Sampling step -- 5.7 Enhancement of MOPF using k-medoids algorithm -- References -- 6 Detecting atherosclerotic plaque calcifications of the carotid artery through optimum-path forest -- 6.1 Introduction -- 6.2 Theoretical background -- 6.2.1 Computer-aided diagnosis of atherosclerotic lesions -- 6.2.2 Optimum-path forest -- 6.2.2.1 Optimum-path forest classifier -- 6.2.2.2 Probabilistic optimum-path forest -- 6.2.2.3 Optimum-path forest-based approach for anomaly detection -- 6.2.2.4 Fuzzy optimum-path forest
Title Optimum-Path Forest
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6845696
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780128226896
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFH6ClgNc2MqmMWCKpt1opDZ2HJtbKYxJTKwHVPUWOf7B0EqCmoD483lO0iRjF3bgYiV2lMP3KX5fnp_9AXzTlIYGQ5fPEi19qtnY55IxX9JQJTrQUVjavc1_RldXfLEQs9pzLi_tBKI05U9P4v5NqcY-JNttnf0PupuXYgdeI-nYIu3YvlDEzW3F-C_8-u8e7vwZirpjZ7mZF3VNRVatlU-WN9nqtvhdZVdcxnzSWb5umJRLJbubX1bmeCFd-GyXm-6rCttMZmVpYdbNHQRBmTtgLdtNCX6n3KP6s3RxC5UZFy_Oqc7WRgjN-Cb0AxoS2oP-ZHp2cdlkuAhqTeJsa3Zk_gdnbJzNi_yfkFfG8et30Dduc8d72DDpAHbXlhZePcMNYKdzPuMeiC6kXgXpiVcBOvRaOIcewuR1wfwA8-_n19Mffu014UvnbM59w1SgR1SPiQ41s5EdUxMSpq07Y0-hyNOESTpSwhKJshVlkBxZMgoSIpSNEkE-Qi_NUvMJPGa55kybRBuJ_4P4tOCBZQqVdpTYSO3D1w4i8eOyXBfP479g3QdvDVRcjtfFuvH56ZRxlL2CfX7New5gu2X-EHrF6sEcwZZ6LG7z1Zeas2cQMSPv
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Optimum-Path+Forest%3A+Theory%2C+Algorithms%2C+and+Applications&rft.au=Falcao%2C+Alexandre+Xavier&rft.au=Papa%2C+Joao+Paulo&rft.date=2022-01-06&rft.pub=Academic+Press&rft.isbn=9780128226896&rft.externalDocID=9780128226896
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801282%2F9780128226896.jpg