Efficiently Improving and Quantifying Robot Accuracy In Situ

The advancement of simulation-assisted robot programming, automation of high-tolerance assembly operations, and improvement of real-world performance engender a need for positionally accurate robots. Despite tight machining tolerances, good mechanical design, and careful assembly, robotic arms typic...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 1
Main Authors: Wyk, Karl Van, Falco, Joe, Cheok, Geraldine
Format: Journal Article
Language:English
Published: United States 01.01.2019
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The advancement of simulation-assisted robot programming, automation of high-tolerance assembly operations, and improvement of real-world performance engender a need for positionally accurate robots. Despite tight machining tolerances, good mechanical design, and careful assembly, robotic arms typically exhibit average Cartesian positioning errors of several millimeters. Fortunately, the vast majority of this error can be removed in software by proper calibration of the so-called "zero-offsets" of a robot's joints. This research developed an automated, inexpensive, highly portable, calibration method that fine tunes these kinematic parameters, thereby, improving a robot's average positioning accuracy four-fold throughout its workspace. In particular, a prospective low-cost motion capture system and a benchmark laser tracker were used as reference sensors for robot calibration. Bayesian inference produced optimized zero-offset parameters alongside their uncertainty for data from both reference sensors. Relative and absolute accuracy metrics were proposed and applied for quantifying robot positioning accuracy. Uncertainty analysis of a validated, probabilistic robot model quantified the absolute positioning accuracy throughout its entire workspace. Altogether, three measures of accuracy conclusively revealed multi-fold improvement in the positioning accuracy of the robotic arm. Bayesian inference on motion capture data yielded zero-offsets and accuracy calculations comparable to those derived from laser tracker data, ultimately proving this method's viability towards robot calibration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.
ISSN:1545-5955
1558-3783
DOI:10.48550/arXiv.1908.07273