Analysis of Approximation by Linear Operators on Variable L_p^(p(.)) Spaces and Applications in Learning Theory
This paper is concerned with approximation on variable [superscript] L ρ p ( · ) [/superscript] spaces associated with a general exponent function p and a general bounded Borel measure ρ on an open subset Ω of [superscript] R d [/superscript] . We mainly consider approximation by Bernstein type line...
Gespeichert in:
| Veröffentlicht in: | Abstract and Applied Analysis Jg. 2014; S. 770 - 779-671 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Hindawi Limiteds
01.12.2014
John Wiley & Sons, Inc |
| Schlagworte: | |
| ISSN: | 1085-3375, 1687-0409 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper is concerned with approximation on variable [superscript] L ρ p ( · ) [/superscript] spaces associated with a general exponent function p and a general bounded Borel measure ρ on an open subset Ω of [superscript] R d [/superscript] . We mainly consider approximation by Bernstein type linear operators. Under an assumption of log-Hölder continuity of the exponent function p , we verify a conjecture raised previously about the uniform boundedness of Bernstein-Durrmeyer and Bernstein-Kantorovich operators on the [superscript] L ρ p ( · ) [/superscript] space. Quantitative estimates for the approximation are provided for high orders of approximation by linear combinations of such positive linear operators. Motivating connections to classification and quantile regression problems in learning theory are also described. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1085-3375 1687-0409 |
| DOI: | 10.1155/2014/454375 |