Analysis of Approximation by Linear Operators on Variable L_p^(p(.)) Spaces and Applications in Learning Theory

This paper is concerned with approximation on variable [superscript] L ρ p ( · ) [/superscript] spaces associated with a general exponent function p and a general bounded Borel measure ρ on an open subset Ω of [superscript] R d [/superscript] . We mainly consider approximation by Bernstein type line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis Jg. 2014; S. 770 - 779-671
Hauptverfasser: Bing-Zheng Li, Ding-Xuan Zhou
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Hindawi Limiteds 01.12.2014
John Wiley & Sons, Inc
Schlagworte:
ISSN:1085-3375, 1687-0409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with approximation on variable [superscript] L ρ p ( · ) [/superscript] spaces associated with a general exponent function p and a general bounded Borel measure ρ on an open subset Ω of [superscript] R d [/superscript] . We mainly consider approximation by Bernstein type linear operators. Under an assumption of log-Hölder continuity of the exponent function p , we verify a conjecture raised previously about the uniform boundedness of Bernstein-Durrmeyer and Bernstein-Kantorovich operators on the [superscript] L ρ p ( · ) [/superscript] space. Quantitative estimates for the approximation are provided for high orders of approximation by linear combinations of such positive linear operators. Motivating connections to classification and quantile regression problems in learning theory are also described.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1085-3375
1687-0409
DOI:10.1155/2014/454375