Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds A Geometric Approach to Modeling and Analysis /

This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lee, Taeyoung (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham : Springer International Publishing, 2018.
Ausgabe:1st ed. 2018.
Schriftenreihe:Interaction of Mechanics and Mathematics,
Schlagworte:
ISBN:9783319569536
ISSN:1860-6245
Online-Zugang: Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000005i 4500
003 SK-BrCVT
005 20220618120200.0
007 cr nn 008mamaa
008 170814s2018 gw | s |||| 0|eng d
020 |a 9783319569536 
024 7 |a 10.1007/978-3-319-56953-6  |2 doi 
035 |a CVTIDW09763 
040 |a Springer-Nature  |b eng  |c CVTISR  |e AACR2 
041 |a eng 
100 1 |a Lee, Taeyoung.  |1 https://orcid.org/0000-0003-4982-4150  |4 aut 
245 1 0 |a Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds  |h [electronic resource] :  |b A Geometric Approach to Modeling and Analysis /  |c by Taeyoung Lee, Melvin Leok, N. Harris McClamroch. 
250 |a 1st ed. 2018. 
260 1 |a Cham :  |b Springer International Publishing,  |c 2018. 
300 |a XXVII, 539 p. 49 illus.  |b online resource. 
490 1 |a Interaction of Mechanics and Mathematics,  |x 1860-6245 
500 |a Engineering  
505 0 |a Mathematical Background -- Kinematics -- Classical Lagrangian and Hamiltonian Dynamics -- Langrangian and Hamiltonian Dynamics on (S1)n -- Lagrangian and Hamiltonian Dynamics on (S2)n -- Lagrangian and Hamiltonian Dynamics on SO(3) -- Lagrangian and Hamiltonian Dynamics on SE(3) -- Lagrangian and Hamiltonian Dynamics on Manifolds -- Rigid and Mult-body Systems -- Deformable Multi-body Systems -- Fundamental Lemmas of the Calculus of Variations -- Linearization as an Approximation to Lagrangian Dynamics on a Manifold. 
516 |a text file PDF 
520 |a This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a System theory. 
650 0 |a Computer mathematics. 
856 4 0 |u http://hanproxy.cvtisr.sk/han/cvti-ebook-springer-eisbn-978-3-319-56953-6  |y Vzdialený prístup pre registrovaných používateľov 
910 |b ZE07043 
919 |a 978-3-319-56953-6 
974 |a andrea.lebedova  |f Elektronické zdroje 
992 |a SUD 
999 |c 274583  |d 274583