Antibiogram profile of Enterococcus faecalis and Enterococcus faecium in chicken meat from supermarkets in Sleman District, Indonesia.

Uloženo v:
Podrobná bibliografie
Název: Antibiogram profile of Enterococcus faecalis and Enterococcus faecium in chicken meat from supermarkets in Sleman District, Indonesia.
Autoři: Isra Nurrahmat, Andi Muhamad1, Susetya, Heru2, Putri, Khrisdiana2 khrisdiana@ugm.ac.id
Zdroj: Veterinary World. Feb2025, Vol. 18 Issue 2, p491-499. 9p.
Druh dokumentu: Article
Témata: Chicken as food, Enterococcus faecalis, Poultry as food, Fecal contamination, Enterococcus faecium
Author-Supplied Keywords: antibiotic resistance
Enterococcus
food safety
multidrug resistance
supermarket chicken
Abstrakt: Background and Aim: Enterococci are commensal bacteria in the digestive tract of poultry and serve as indicators of fecal contamination. Their significance in veterinary and human medicine arises from their ability to acquire antibiotic-resistance genes, posing a potential public health risk. Poultry meat, a major protein source in Indonesia, can act as a reservoir for Enterococcus species, transferring antibiotic-resistant strains to humans through food handling. Despite rigorous hygiene standards in supermarket supply chains, limited studies have assessed contamination levels. This study aimed to identify Enterococcus species from supermarket chicken meat in Sleman District, Yogyakarta, Indonesia, and evaluate their antibiotic resistance profiles. Materials and Methods: Chicken breast samples were randomly collected from three Supermarkets (A, B, and C). Bacterial isolation was performed using buffered peptone water and enterococcosel agar. Presumptive colonies were confirmed by polymerase chain reaction for genus and species identification. Antibiotic susceptibility was assessed using the Kirby-Bauer disk diffusion method against ampicillin (AMP), tetracycline (TET), erythromycin (ERY), and vancomycin (VAN). Results: A total of 269 Enterococcus isolates were confirmed, including 163 Enterococcus faecium (EFM), 92 Enterococcus faecalis (EFS), and 14 other Enterococcus species. Resistance to AMP, TET, and ERY in EFM was 12.12%, 57.57%, and 66.67%, respectively, while resistance in EFS was 4.54%, 31.82%, and 63.63%. No isolates showed resistance to VAN. Multidrug resistance (MDR) was observed in 60.60% of EFM and 36.36% of EFS isolates. Conclusion: Despite high susceptibility to AMP and VAN, resistance to TET and ERY was prevalent. The presence of MDR isolates underscores the need for continuous surveillance of antibiotic resistance in Enterococcus species within the food chain. This study highlights the necessity of further research with expanded sampling and antibiotic panels to assess the dissemination of antibiotic resistance genes and potential public health risks. [ABSTRACT FROM AUTHOR]
Copyright of Veterinary World is the property of Veterinary World and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Author Affiliations: 1Veterinary Science Postgraduate Programme, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Indonesia
2Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Indonesia
ISSN: 0972-8988
DOI: 10.14202/vetworld.2025.491-499
Přístupové číslo: 183618327
Databáze: Veterinary Source
Popis
Abstrakt:Background and Aim: Enterococci are commensal bacteria in the digestive tract of poultry and serve as indicators of fecal contamination. Their significance in veterinary and human medicine arises from their ability to acquire antibiotic-resistance genes, posing a potential public health risk. Poultry meat, a major protein source in Indonesia, can act as a reservoir for Enterococcus species, transferring antibiotic-resistant strains to humans through food handling. Despite rigorous hygiene standards in supermarket supply chains, limited studies have assessed contamination levels. This study aimed to identify Enterococcus species from supermarket chicken meat in Sleman District, Yogyakarta, Indonesia, and evaluate their antibiotic resistance profiles. Materials and Methods: Chicken breast samples were randomly collected from three Supermarkets (A, B, and C). Bacterial isolation was performed using buffered peptone water and enterococcosel agar. Presumptive colonies were confirmed by polymerase chain reaction for genus and species identification. Antibiotic susceptibility was assessed using the Kirby-Bauer disk diffusion method against ampicillin (AMP), tetracycline (TET), erythromycin (ERY), and vancomycin (VAN). Results: A total of 269 Enterococcus isolates were confirmed, including 163 Enterococcus faecium (EFM), 92 Enterococcus faecalis (EFS), and 14 other Enterococcus species. Resistance to AMP, TET, and ERY in EFM was 12.12%, 57.57%, and 66.67%, respectively, while resistance in EFS was 4.54%, 31.82%, and 63.63%. No isolates showed resistance to VAN. Multidrug resistance (MDR) was observed in 60.60% of EFM and 36.36% of EFS isolates. Conclusion: Despite high susceptibility to AMP and VAN, resistance to TET and ERY was prevalent. The presence of MDR isolates underscores the need for continuous surveillance of antibiotic resistance in Enterococcus species within the food chain. This study highlights the necessity of further research with expanded sampling and antibiotic panels to assess the dissemination of antibiotic resistance genes and potential public health risks. [ABSTRACT FROM AUTHOR]
ISSN:09728988
DOI:10.14202/vetworld.2025.491-499