Ultranarrow Semiconductor WS 2 Nanoribbon Field-Effect Transistors
Saved in:
| Title: | Ultranarrow Semiconductor WS 2 Nanoribbon Field-Effect Transistors |
|---|---|
| Authors: | Md Hoque, Anamul, 1988, Poliakov, Aleksandr, 1990, Munkhbat, Battulga, 1988, Iordanidou, Konstantina, 1989, Agrawal, Abhay Vivek, 1993, Yankovich, Andrew, 1983, Mallik, Sameer Kumar, 1994, Zhang, Bing, 1982, Mitra, Richa, 1992, Kalaboukhov, Alexei, 1975, Olsson, Eva, 1960, Kubatkin, Sergey, 1959, Wiktor, Julia, 1988, Lara Avila, Samuel, 1983, Shegai, Timur, 1982, Dash, Saroj Prasad, 1975 |
| Source: | Kvantplasmonik – en teknologi för foton-fotonväxelverkan på kvantnivå vid rumstemperatur 2D Heterostructure Non-volatile Spin Memory Technology (2DSPIN-TECH) Visualisering av stark växelverkan mellan ljus och materia genom NEX-GEN-STEM Tvådimensionell spintronik minnesteknik Graphene Core Project 3 (Graphene Flagship) Topologi och magnetism i nya kvantmaterial Spinntronik med topologiskt kvantmaterial och magnetisk heterostruktur Stark plasmon-exciton koppling för effektiva foton-foton interaktioner 2D material-baserad teknologi för industriella applikationer (2D-TECH) Nano Letters. 25(5):1750-1757 |
| Subject Terms: | crystallographically controlled nanostructuring, field-effect transistors, zigzagedges, transition metal dichalcogenides, diodes, 2D semiconductors, TMDs, WS2, nanoribbon |
| Description: | Semiconducting transition metal dichalcogenides (TMDs) have attracted significant attention for their potential to develop high-performance, energy-efficient, and nanoscale electronic devices. Despite notable advancements in scaling down the gate and channel length of TMD field-effect transistors (FETs), the fabrication of sub-30 nm narrow channels and devices with atomic-scale edge control still poses challenges. Here, we demonstrate a crystallography-controlled nanostructuring technique to fabricate ultranarrow tungsten disulfide (WS2) nanoribbons as small as sub-10 nm in width. The WS2 nanoribbon junctions having different widths display diodic current-voltage characteristics, providing a way to create and tune nanoscale device properties by controlling the size of the structures. The transport properties of the nanoribbon FETs are primarily governed by narrow channel effects, where the mobility in the narrow channels is limited by edge scattering. Our findings on nanoribbon devices hold potential for developing future-generation nanometer-scale van der Waals semiconductor-based devices and circuits. |
| File Description: | electronic |
| Access URL: | https://research.chalmers.se/publication/545055 https://research.chalmers.se/publication/545092 https://research.chalmers.se/publication/545092/file/545092_Fulltext.pdf |
| Database: | SwePub |
| Abstract: | Semiconducting transition metal dichalcogenides (TMDs) have attracted significant attention for their potential to develop high-performance, energy-efficient, and nanoscale electronic devices. Despite notable advancements in scaling down the gate and channel length of TMD field-effect transistors (FETs), the fabrication of sub-30 nm narrow channels and devices with atomic-scale edge control still poses challenges. Here, we demonstrate a crystallography-controlled nanostructuring technique to fabricate ultranarrow tungsten disulfide (WS2) nanoribbons as small as sub-10 nm in width. The WS2 nanoribbon junctions having different widths display diodic current-voltage characteristics, providing a way to create and tune nanoscale device properties by controlling the size of the structures. The transport properties of the nanoribbon FETs are primarily governed by narrow channel effects, where the mobility in the narrow channels is limited by edge scattering. Our findings on nanoribbon devices hold potential for developing future-generation nanometer-scale van der Waals semiconductor-based devices and circuits. |
|---|---|
| ISSN: | 15306992 15306984 |
| DOI: | 10.1021/acs.nanolett.4c01076 |
Nájsť tento článok vo Web of Science