Symmetry-informed transferability of optimal parameters in the quantum approximate optimization algorithm
Saved in:
| Title: | Symmetry-informed transferability of optimal parameters in the quantum approximate optimization algorithm |
|---|---|
| Authors: | Lyngfelt, Isak, 1997, Garcia Alvarez, Laura, 1990 |
| Source: | Physical Review A. 111(2) |
| Subject Terms: | Optimization problems, Quantum algorithms, Adiabatic quantum optimization |
| Description: | One of the main limitations of variational quantum algorithms is the classical optimization of the highly dimensional nonconvex variational parameter landscape. To simplify this optimization, we can reduce the search space using problem symmetries and typical optimal parameters as initial points if they concentrate. In this article, we consider typical values of optimal parameters of the quantum approximate optimization algorithm for the MAXCUT problem with d-regular tree subgraphs and reuse them in different graph instances. We prove symmetries in the optimization landscape of several kinds of weighted and unweighted graphs, which explains the existence of multiple sets of optimal parameters. However, we observe that not all optimal sets can be successfully transferred between problem instances. We find specific transferable domains in the search space and show how to translate an arbitrary set of optimal parameters into the adequate domain using the studied symmetries. Finally, we extend these results to general classical optimization problems described by Ising Hamiltonians, the Hamiltonian variational ansatz for relevant physical models, and the recursive and multiangle quantum approximate optimization algorithms. |
| File Description: | electronic |
| Access URL: | https://research.chalmers.se/publication/545281 https://research.chalmers.se/publication/545281/file/545281_Fulltext.pdf |
| Database: | SwePub |
Be the first to leave a comment!
Full Text Finder
Nájsť tento článok vo Web of Science