On the Best Lattice Quantizers
Uloženo v:
| Název: | On the Best Lattice Quantizers |
|---|---|
| Autoři: | Agrell, Erik, 1965, Allen, Bruce |
| Zdroj: | IEEE Transactions on Information Theory. 69(12):7650-7658 |
| Témata: | product lattice, Mean square error methods, quantization constant, Voronoi region, vector quantization, normalized second moment, Symmetric matrices, laminated lattice, quantization error, Dither autocorrelation, Quantization (signal), lattice theory, Lattices, mean square error, Upper bound, moment of inertia, white noise, Generators, Covariance matrices |
| Popis: | A lattice quantizer approximates an arbitrary real-valued source vector with a vector taken from a specific discrete lattice. The quantization error is the difference between the source vector and the lattice vector. In a classic 1996 paper, Zamir and Feder show that the globally optimal lattice quantizer (which minimizes the mean square error) has white quantization error: for a uniformly distributed source, the covariance of the error is the identity matrix, multiplied by a positive real factor. We generalize the theorem, showing that the same property holds (i) for any lattice whose mean square error cannot be decreased by a small perturbation of the generator matrix, and (ii) for an optimal product of lattices that are themselves locally optimal in the sense of (i). We derive an upper bound on the normalized second moment (NSM) of the optimal lattice in any dimension, by proving that any lower- or upper-triangular modification to the generator matrix of a product lattice reduces the NSM. Using these tools and employing the best currently known lattice quantizers to build product lattices, we construct improved lattice quantizers in dimensions 13 to 15, 17 to 23, and 25 to 48. In some dimensions, these are the first reported lattices with normalized second moments below the best known upper bound. |
| Popis souboru: | electronic |
| Přístupová URL adresa: | https://research.chalmers.se/publication/536578 https://research.chalmers.se/publication/536578/file/536578_Fulltext.pdf |
| Databáze: | SwePub |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://research.chalmers.se/publication/536578# Name: EDS - SwePub (s4221598) Category: fullText Text: View record in SwePub – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsswe&genre=article&issn=00189448&ISBN=&volume=69&issue=12&date=20230101&spage=7650&pages=7650-7658&title=IEEE Transactions on Information Theory&atitle=On%20the%20Best%20Lattice%20Quantizers&aulast=Agrell%2C%20Erik&id=DOI:10.1109/TIT.2023.3291313 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Agrell%20E Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsswe DbLabel: SwePub An: edsswe.oai.research.chalmers.se.19cc0838.8677.47d6.9cb2.3ebbab6ad88e RelevancyScore: 1034 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1033.77954101563 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: On the Best Lattice Quantizers – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Agrell%2C+Erik%22">Agrell, Erik</searchLink>, 1965<br /><searchLink fieldCode="AR" term="%22Allen%2C+Bruce%22">Allen, Bruce</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>IEEE Transactions on Information Theory</i>. 69(12):7650-7658 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22product+lattice%22">product lattice</searchLink><br /><searchLink fieldCode="DE" term="%22Mean+square+error+methods%22">Mean square error methods</searchLink><br /><searchLink fieldCode="DE" term="%22quantization+constant%22">quantization constant</searchLink><br /><searchLink fieldCode="DE" term="%22Voronoi+region%22">Voronoi region</searchLink><br /><searchLink fieldCode="DE" term="%22vector+quantization%22">vector quantization</searchLink><br /><searchLink fieldCode="DE" term="%22normalized+second+moment%22">normalized second moment</searchLink><br /><searchLink fieldCode="DE" term="%22Symmetric+matrices%22">Symmetric matrices</searchLink><br /><searchLink fieldCode="DE" term="%22laminated+lattice%22">laminated lattice</searchLink><br /><searchLink fieldCode="DE" term="%22quantization+error%22">quantization error</searchLink><br /><searchLink fieldCode="DE" term="%22Dither+autocorrelation%22">Dither autocorrelation</searchLink><br /><searchLink fieldCode="DE" term="%22Quantization+%28signal%29%22">Quantization (signal)</searchLink><br /><searchLink fieldCode="DE" term="%22lattice+theory%22">lattice theory</searchLink><br /><searchLink fieldCode="DE" term="%22Lattices%22">Lattices</searchLink><br /><searchLink fieldCode="DE" term="%22mean+square+error%22">mean square error</searchLink><br /><searchLink fieldCode="DE" term="%22Upper+bound%22">Upper bound</searchLink><br /><searchLink fieldCode="DE" term="%22moment+of+inertia%22">moment of inertia</searchLink><br /><searchLink fieldCode="DE" term="%22white+noise%22">white noise</searchLink><br /><searchLink fieldCode="DE" term="%22Generators%22">Generators</searchLink><br /><searchLink fieldCode="DE" term="%22Covariance+matrices%22">Covariance matrices</searchLink> – Name: Abstract Label: Description Group: Ab Data: A lattice quantizer approximates an arbitrary real-valued source vector with a vector taken from a specific discrete lattice. The quantization error is the difference between the source vector and the lattice vector. In a classic 1996 paper, Zamir and Feder show that the globally optimal lattice quantizer (which minimizes the mean square error) has white quantization error: for a uniformly distributed source, the covariance of the error is the identity matrix, multiplied by a positive real factor. We generalize the theorem, showing that the same property holds (i) for any lattice whose mean square error cannot be decreased by a small perturbation of the generator matrix, and (ii) for an optimal product of lattices that are themselves locally optimal in the sense of (i). We derive an upper bound on the normalized second moment (NSM) of the optimal lattice in any dimension, by proving that any lower- or upper-triangular modification to the generator matrix of a product lattice reduces the NSM. Using these tools and employing the best currently known lattice quantizers to build product lattices, we construct improved lattice quantizers in dimensions 13 to 15, 17 to 23, and 25 to 48. In some dimensions, these are the first reported lattices with normalized second moments below the best known upper bound. – Name: Format Label: File Description Group: SrcInfo Data: electronic – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/536578" linkWindow="_blank">https://research.chalmers.se/publication/536578</link><br /><link linkTarget="URL" linkTerm="https://research.chalmers.se/publication/536578/file/536578_Fulltext.pdf" linkWindow="_blank">https://research.chalmers.se/publication/536578/file/536578_Fulltext.pdf</link> |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsswe&AN=edsswe.oai.research.chalmers.se.19cc0838.8677.47d6.9cb2.3ebbab6ad88e |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/TIT.2023.3291313 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 9 StartPage: 7650 Subjects: – SubjectFull: product lattice Type: general – SubjectFull: Mean square error methods Type: general – SubjectFull: quantization constant Type: general – SubjectFull: Voronoi region Type: general – SubjectFull: vector quantization Type: general – SubjectFull: normalized second moment Type: general – SubjectFull: Symmetric matrices Type: general – SubjectFull: laminated lattice Type: general – SubjectFull: quantization error Type: general – SubjectFull: Dither autocorrelation Type: general – SubjectFull: Quantization (signal) Type: general – SubjectFull: lattice theory Type: general – SubjectFull: Lattices Type: general – SubjectFull: mean square error Type: general – SubjectFull: Upper bound Type: general – SubjectFull: moment of inertia Type: general – SubjectFull: white noise Type: general – SubjectFull: Generators Type: general – SubjectFull: Covariance matrices Type: general Titles: – TitleFull: On the Best Lattice Quantizers Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Agrell, Erik – PersonEntity: Name: NameFull: Allen, Bruce IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-print Value: 00189448 – Type: issn-print Value: 15579654 – Type: issn-locals Value: SWEPUB_FREE – Type: issn-locals Value: CTH_SWEPUB Numbering: – Type: volume Value: 69 – Type: issue Value: 12 Titles: – TitleFull: IEEE Transactions on Information Theory Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science